Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Physiol ; 594(11): 2985-3004, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26751048

RESUMEN

KEY POINTS: During each contraction and haemodynamic disturbance, cardiac myocytes are subjected to fluid shear stress as a result of blood flow and the relative movement of sheets of myocytes. The present study aimed to characterize the shear stress-sensitive membrane current in atrial myocytes using the whole-cell patch clamp technique, combined with pressurized fluid flow, as well as pharmacological and genetic interventions of specific proteins. The data obtained suggest that shear stress indirectly activates the monovalent cation current carried by transient receptor potential melastatin subfamily 4 channels via type 2 inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) release in subsarcolemmal domains of atrial myocytes. Ca(2+) -mediated interactions between these two proteins under shear stress may be an important mechanism by which atrial cells measure mechanical stress and translate it to alter their excitability. ABSTRACT: Atrial myocytes are subjected to shear stress during the cardiac cycle under physiological or pathological conditions. The ionic currents regulated by shear stress remain poorly understood. We report the characteristics, molecular identity and activation mechanism of the shear stress-sensitive current (Ishear ) in rat atrial myocytes. A shear stress of ∼16 dyn cm(-2) was applied to single myocytes using a pressurized microflow system, and the current was measured by whole-cell patch clamp. In symmetrical CsCl solutions with minimal concentrations of internal EGTA, Ishear showed an outwardly rectifying current-voltage relationship (reversal at -2 mV). The current was conducted primarily (∼80%) by monovalent cations but not Ca(2+) . It was suppressed by intracellular Ca(2+) buffering at a fixed physiological level, inhibitors of transient receptor potential melastatin subfamily 4 (TRPM4), intracellular introduction of TRPM4 antibodies or knockdown of TRPM4 expression, suggesting that TRPM4 carries most of this current. A notable reduction in Ishear occurred upon inhibition of Ca(2+) release through the ryanodine receptors or inositol 1,4,5-trisphosphate receptors (IP3 R) and upon depletion of sarcoplasmic reticulum Ca(2+) . In type 2 IP3 R (IP3 R2) knockout atrial myocytes, Ishear was 10-20% of that in wild-type myocytes. Immunocytochemistry and proximity ligation assays revealed that TRPM4 and IP3 R2 were expressed at peripheral sites with co-localization, although they are not localized within 40 nm. Peripheral localization of TRPM4 was intact in IP3 R2 knockout cells. The data obtained in the present study suggest that shear stress activates TRPM4 current by triggering Ca(2+) release from the IP3 R2 in the peripheral domains of atrial myocytes.


Asunto(s)
Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Mecánico , Canales Catiónicos TRPM/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPM/antagonistas & inhibidores
2.
FASEB J ; 28(7): 2932-41, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24736413

RESUMEN

Natural killer (NK) cell-based immunotherapy is a promising strategy for cancer treatment, and caspase-3 is an important effector molecule in NK cell-mediated apoptosis in cancers. Here, we evaluated the antitumor effects of NK cell-based immunotherapy by serial noninvasive imaging of apoptosis using a caspase-3 sensor in mice with human glioma xenografts. Human glioma cells expressing both a caspase-3 sensor as a surrogate marker for caspase-3 activation and Renilla luciferase (Rluc) as a surrogate marker for cell viability were established and referred to as D54-CR cells. Human NK92 cells were used as effector cells. Treatment with NK92 cells resulted in a time- and effector number-dependent increase in bioluminescence imaging (BLI) activity of the caspase-3 sensor in D54-CR cells in vitro. Caspase-3 activation by NK92 treatment was blocked by Z-VAD treatment in D54-CR cells. Transfusion of NK92 cells induced an increase of the BLI signal by caspase-3 activation in a dose- and time-dependent manner in D54-CR tumor-bearing mice but not in PBS-treated mice. Accordingly, sequential BLI with the Rluc reporter gene revealed marked retardation of tumor growth in the NK92-treatment group but not in the PBS-treatment group. These data suggest that noninvasive imaging of apoptosis with a caspase-3 sensor can be used as an effective tool for evaluation of therapeutic efficacy as well as for optimization of NK cell-based immunotherapy.-Lee, H. W., Singh, T. D., Lee, S.-W., Ha, J.-H., Rehemtulla, A., Ahn, B.-C., Jeon, Y.-H., Lee, J. Evaluation of therapeutic effects of natural killer (NK) cell-based immunotherapy in mice using in vivo apoptosis bioimaging with a caspase-3 sensor.


Asunto(s)
Antineoplásicos/inmunología , Apoptosis/inmunología , Caspasa 3/inmunología , Supervivencia Celular/inmunología , Células Asesinas Naturales/inmunología , Animales , Línea Celular , Línea Celular Tumoral , Glioma/inmunología , Glioma/terapia , Humanos , Inmunoterapia/métodos , Ratones
3.
Mol Imaging ; 132014.
Artículo en Inglés | MEDLINE | ID: mdl-25022618

RESUMEN

We attempted to visualize the serial induction of caspase-3-dependent apoptosis mediated by Fas ligand/tumor necrosis factor-related apoptosis-inducing ligand (FasL/TRAIL) adenoviral gene therapy in mice bearing human glioma xenografts using a caspase-3 biosensor and monitored its therapeutic effects. Human D54 glioma cells expressing both the caspase-3 sensor and the Renilla luciferase (Rluc) gene were established (referred to as D54-CR cells). The bioluminescence imaging (BLI) signals of the caspase-3 sensor in the D54-CR cells were increased in a time- and virus dose-dependent manner by Ad-TRAIL or Ad-FasL transduction. Fluorescence-activated cell sorting (FACS) analysis revealed an increase in both cleaved caspase-3 or poly(ADP-ribose) polymerase (PARP) and annexin V- and propidium iodide-positive cells depending on the dosage of administered virus. Ad-FasL treatment resulted in a significant increase in the BLI activity of the caspase-3 sensor in the D54-CR tumors, which were ≈ 8.2, ≈ 12.9, and ≈ 46.6 times higher than those of control at 12 hours, 24 hours, and 96 hours posttreatment, respectively. In contrast, a significant reduction in Rluc activity, as a surrogate marker of cell viability, was detected in the tumors treated with Ad-FasL but not in those treated with Ad-null. Overall, the activation of caspase-3-dependent apoptosis induced by Ad-FasL/Ad-TRAIL gene therapy was successfully monitored by a sensitive imaging platform for caspase-3 activation.


Asunto(s)
Adenoviridae/genética , Apoptosis , Caspasa 3/metabolismo , Glioma/diagnóstico por imagen , Glioma/terapia , Luciferasas de Renilla , Sustancias Luminiscentes , Adenoviridae/metabolismo , Animales , Técnicas Biosensibles , Línea Celular Tumoral , Proteína Ligando Fas/genética , Proteína Ligando Fas/metabolismo , Terapia Genética , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales , Cintigrafía
5.
Int J Biol Macromol ; 234: 123664, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791934

RESUMEN

Lately, 3D cell culture technique has gained a lot of appreciation as a research model. Augmented with technological advancements, the area of 3D cell culture is growing rapidly with a diverse array of scaffolds being tested. This is especially the case for spheroid cultures. The culture of cells as spheroids provides opportunities for unanticipated vision into biological phenomena with its application to drug discovery, metabolic profiling, stem cell research as well as tumor, and disease biology. Spheroid fabrication techniques are broadly categorised into matrix-dependent and matrix-independent techniques. While there is a profusion of spheroid fabrication substrates with substantial biological relevance, an economical, modular, and bio-compatible substrate for high throughput production of spheroids is lacking. In this review, we posit the prospects of elastin-like polypeptides (ELPs) as a broad-spectrum spheroid fabrication platform. Elastin-like polypeptides are nature inspired, size-tunable genetically engineered polymers with wide applicability in various arena of biological considerations, has been employed for spheroid culture with profound utility. The technology offers a cheap, high-throughput, reproducible alternative for spheroid culture with exquisite adaptability. Here, we will brief the applicability of 3D cultures as compared to 2D cultures with spheroids being the focal point of the review. Common approaches to spheroid fabrication are discussed with existential limitations. Finally, the versatility of elastin-like polypeptide inspired substrates for spheroid culture has been discussed.


Asunto(s)
Elastina , Esferoides Celulares , Técnicas de Cultivo de Célula/métodos , Descubrimiento de Drogas
6.
Cells ; 12(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36766812

RESUMEN

Previously, we reported that an inverse agonist of estrogen-related receptor gamma (ERRγ), GSK5182, enhances sodium iodide (Na+/I-) symporter (NIS) function through mitogen-activated protein (MAP) kinase signaling in anaplastic thyroid cancer cells. This finding helped us to further investigate the effects of GSK5182 on NIS function in papillary thyroid cancer (PTC) refractory to radioactive iodine (RAI) therapy. Herein, we report the effects of ERRγ on the regulation of NIS function in RAI-resistant PTC cells using GSK5182. RAI-refractory BCPAP cells were treated with GK5182 for 24 h at various concentrations, and radioiodine avidity was determined with or without potassium perchlorate (KClO4) as an NIS inhibitor. We explored the effects of GSK5182 on ERRγ, the mitogen-activated protein (MAP) kinase pathway, and iodide metabolism-related genes. We examined whether the MAP pathway affected GSK5182-mediated NIS function using U0126, a selective MEK inhibitor. A clonogenic assay was performed to evaluate the cytotoxic effects of I-131. GSK5182 induced an increase in radioiodine avidity in a dose-dependent manner, and the enhanced uptake was completely inhibited by KClO4 in BCPAP cells. We found that ERRγ was downregulated and phosphorylated extracellular signal-regulated kinase (ERK)1/2 was upregulated in BCPAP cells, with an increase in total and membranous NIS and iodide metabolism-related genes. MEK inhibitors reversed the increase in radioiodine avidity induced by GSK5182. Clonogenic examination revealed the lowest survival in cells treated with a combination of GSK5182 and I-131 compared to those treated with either GSK518 or I-131 alone. We demonstrate that an inverse agonist of ERRγ, GSK5182, enhances the function of NIS protein via the modulation of ERRγ and MAP kinase signaling, thereby leading to increased responsiveness to radioiodine in RAI-refractory papillary thyroid cancer cells.


Asunto(s)
Simportadores , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/radioterapia , Neoplasias de la Tiroides/metabolismo , Radioisótopos de Yodo/uso terapéutico , Cáncer Papilar Tiroideo/tratamiento farmacológico , Cáncer Papilar Tiroideo/radioterapia , Yoduros/metabolismo , Agonismo Inverso de Drogas , Mitógenos , Simportadores/genética , Simportadores/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Estrógenos
7.
Cell Mol Biol Lett ; 17(1): 124-35, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22207335

RESUMEN

Inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1) is already known to be highly expressed in the brain, and is found in many other tissues, including the atrium of the heart. Although the complete primary structure of IP(3)R1 in the rat brain has been reported, the complete sequence of an IP(3)R1 clone from atrial myocytes has not been reported. We isolated an IP(3)R1 complementary DNA (cDNA) clone from isolated adult rat atrial myocytes, and found a new splice variant of IP(3)R1 that was different from a previously reported IP(3)R1 cDNA clone obtained from a rat brain (NCBI GenBank accession number: NM_001007235). Our clone had 99% similarity with the rat brain IP(3)R1 sequence; the exceptions were 39 amino acid deletions at the position of 1693-1731, and the deletion of phenylalanine at position 1372 that lay in the regulatory region. Compared with the rat brain IP(3)R1, in our clone proline was replaced with serine at residue 2439, and alanine was substituted for valine at residue 2445. These changes lie adjacent to or within the fifth transmembrane domain (2440-2462). Although such changes in the amino acid sequences were different from the rat brain IP3R1 clone, they were conserved in human or mouse IP3R1. We produced a plasmid construct expressing the atrial IP3R1 together with green fluorescent protein (GFP), and successfully overexpressed the atrial IP3R1 in the adult atrial cell line HL-1. Further investigation is needed on the physiological significance of the new splice variant in atrial cell function.


Asunto(s)
Regulación de la Expresión Génica , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células Musculares/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Encéfalo/metabolismo , Línea Celular , Clonación Molecular , Eliminación de Gen , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Empalme del ARN , Ratas , Ratas Sprague-Dawley
8.
Biomedicines ; 10(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35625887

RESUMEN

Regenerative medicine using stem cells offers promising strategies for treating a variety of degenerative diseases. Regulation of stem cell behavior and rejuvenate senescence are required for stem cells to be clinically effective. The extracellular matrix (ECM) components have a significant impact on the stem cell's function and fate mimicking the local environment to maintain cells or generate a distinct phenotype. Here, human elastin-like polypeptide-based ECM-mimic biopolymer was designed by incorporating various cell-adhesion ligands, such as RGD and YIGSR. The significant effects of bioactive fusion ELPs named R-ELP, Y-ELP, and RY-ELP were analyzed for human bone-marrow-derived stem cell adhesion, proliferation, maintenance of stemness properties, and differentiation. Multivalent presentation of variable cell-adhesive ligands on RY-ELP polymers indeed promote efficient cell attachment and proliferation of human fibroblast cells dose-dependently. Similarly, surface modified with RY-ELP promoted strong mesenchymal stem cell (MSCs) attachment with greater focal adhesion (FA) complex formation at 6 h post-incubation. The rate of cell proliferation, migration, population doubling time, and collagen I deposition were significantly enhanced in the presence of RY-ELP compared with other fusion ELPs. Together, the expression of multipotent markers and differentiation capacity of MSCs remained unaffected, clearly demonstrating that stemness properties of MSCs were well preserved when cultured on a RY-ELP-modified surface. Hence, bioactive RY-ELP offers an anchorage support system and effectively induces stimulatory response to support stem cell proliferation.

9.
Int J Biol Macromol ; 207: 443-453, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35276294

RESUMEN

Extracellular matrix (ECM) molecules play an important role in regulating molecular signaling associated with proliferation, migration, differentiation, and tissue repair. The identification of new kinds of ECM mimic biomaterials to recapitulate critical functions of biological systems are important for various applications in tissue engineering and regenerative medicine. The use of human elastin derived materials with controlled biological properties and other functionalities to improve their cell-response was proposed. Herein, we reported genetic encoded synthesis of ELP (elastin-like polypeptide) containing ECM domains like RGD (integrin binding ligand) and YIGSR (laminin-selective receptor binding ligand) to regulate cell behaviour in more complex ways, and also better model natural matrices. Thermal responsiveness of the ELPs and structural conformation were determined to confirm its phase transition behaviour. The fusion ELPs derivatives were analysed for mechanical involvement of growth mechanism, regenerative, and healing processes. The designed fusion ELPs promoted fast and strong attachment of fibroblast cells. The fusion ELP derivatives enhanced the migration of keratinocyte cells which of crucial for wound healing. Together it provides a profound matrix for endothelial cells and significantly enhanced tube formation of HUVEC cells. Thus, strategy of using cell adhesive ELP biopolymer emphasizing the role of bioactive ELPs as next generation skin substitutes for regenerative medicine.


Asunto(s)
Elastina , Medicina Regenerativa , Elastina/química , Células Endoteliales/metabolismo , Humanos , Ligandos , Péptidos/química , Péptidos/farmacología
10.
Adv Wound Care (New Rochelle) ; 10(5): 257-269, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32602815

RESUMEN

Significance: Wound dressing based on naturally derived polymer provides a useful platform for treatment of skin injuries. Owing to the high mechanical strength and tunable structural and physicochemical properties of human elastin-like polypeptides (ELPs), they may be used as excellent materials for fabricating biocompatible scaffolds and other products for wound management. Recent Advances: Designing recombinant ELPs mimicking natural elastin to fabricate synthetic polymers suitable for human health care has generated significant interest. ELP-based cell-adhesive biopolymers have been used as an alternative for successful sutureless wound closure due to the physicochemical characteristics of the extracellular matrix. Critical Issues: Different systems of ELPs are being developed in the form of scaffolds, films, hydrogels, photo-linkable sheets, and composites linked with various types of growth factors for wound healing application. However, optimizing the quality and safety attributes for specific application needs designing of recombinant ELPs with structural and functional modifications as needed for the intervention. Future Direction: Chronic wounds are difficult to treat as the wound repair process is interrupted by conditions such as excessive inflammation, impaired extracellular matrix formation, and persistent infections. Conventional therapies such as skin substitutes or autologous skin grafts, in many cases, are unable to reestablish tissue homeostasis and proper healing. The development of innovative materials could induce a better regenerative healing response. In this study, we are reviewing different types of elastin-based materials for wound care application and their future prospects in regenerative medicine.


Asunto(s)
Materiales Biocompatibles/química , Biomimética/métodos , Ingeniería Celular/métodos , Elastina/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Biopolímeros , Sistemas de Liberación de Medicamentos , Humanos , Hidrogeles/química , Péptidos/química , Medicina Regenerativa/métodos
11.
Int J Nanomedicine ; 16: 5039-5052, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335025

RESUMEN

BACKGROUND: Thermal-responsive self-assembled elastin-like polypeptide (ELP)-based nanoparticles are an emerging platform for controlled delivery of therapeutic peptides, proteins and small molecular drugs. The antitumor effect of bioengineered chimeric polypeptide AP1-ELP-KLAK containing an interleukin-4 receptor (IL-4R) targeting peptide and pro-apoptotic peptide (KLAKLAK) was evaluated in glioblastoma (GBM) in vitro and in vivo. METHODS AND RESULTS: Herein, the therapeutic effect of AP1-ELP-KLAK was tested in advanced, and less curable glioblastoma cells with higher expression of IL-4R. Glioblastoma cell lines stably expressing different reporter systems i.e., caspase-3 sensor (surrogate marker for cellular apoptosis) or effluc/enhanced firefly luciferase (cellular viability) were established to measure cell death non-invasively. Bioluminescence imaging (BLI) of D54/effluc and U97MG/effluc treated with AP1-ELP-KLAK exhibited higher cell death up to 2~3-fold than the control. Treatment with AP1-ELP-KLAK resulted in time-dependent increase of caspase-3 sensor BLI activity in D54/C cells and D54/C tumor-bearing mice. Intravenous injection of AP1-ELP-KLAK dramatically reduced tumor growth by inducing cellular apoptosis in D54/effluc tumor-bearing mice. Further, the immuno-histological examination of the excised tumor tissue confirmed the presence of apoptotic cells as well as caspase-3 activation. CONCLUSION: Collectively, AP1-ELP-KLAK effectively induced cellular apoptosis of glioblastoma cells and non-invasive imaging provides a window for real-time monitoring of anti-tumor effect with the provision of improving therapeutic efficacy in a glioblastoma mice model.


Asunto(s)
Glioblastoma , Animales , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Humanos , Ratones , Péptidos , Receptores de Interleucina-4
12.
ACS Biomater Sci Eng ; 6(9): 5024-5031, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-33455295

RESUMEN

Acquired drug resistance is a common occurrence and the main cause of melanoma treatment failure. Melanoma cells frequently developed resistance against cisplatin during chemotherapy, and thus, targeting delivery systems have been devised to decrease drug resistance, increase therapeutic efficacy, and reduce side effects. We genetically engineered a macromolecular carrier using the recursive directional ligation method that specifically targets cisplatin-resistant (Cis-R) melanoma. This carrier is composed of an elastin-like polypeptide (ELP) and multiple copies of Cis-R melanoma-targeting ligands (M-peptide). The designed M16E108 contains 16 targeting ligands incorporated within an ELP and has an ideal thermal phase transition at 39 °C. When treated to melanoma cells, M16E108 specifically accumulated in Cis-R B16F10 melanoma cells and accumulated to a lesser extent in parental B16F10 cells. Consistently, M16E108 exhibited efficient homing and longer retention in tumor tissues in Cis-R melanoma-bearing mice than in parental B16F10 melanoma-bearing mice. Thus, M16E108 was found to display considerable potential as a novel agent that specifically targets cisplatin-resistant melanoma.


Asunto(s)
Elastina , Melanoma , Animales , Cisplatino/farmacología , Elastina/genética , Ligandos , Melanoma/tratamiento farmacológico , Ratones , Péptidos
13.
Nanotheranostics ; 4(2): 57-70, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32190533

RESUMEN

In order to improve clinical outcomes for novel drug delivery systems, distinct optimization of size, shape, multifunctionality, and site-specificity are of utmost importance. In this study, we designed various multivalent elastin-like polypeptide (ELP)-based tumor-targeting polymers in which multiple copies of IL-4 receptor (IL-4R)-targeting ligand (AP1 peptide) were periodically incorporated into the ELP polymer backbone to enhance the affinity and avidity towards tumor cells expressing high levels of IL-4R. Several ELPs with different molecular sizes and structures ranging from unimer to micelle-forming polymers were evaluated for their tumor accumulation as well as in vivo bio-distribution patterns. Different percentages of cell binding and uptake were detected corresponding to polymer size, number of targeting peptides, or unimer versus micelle structure. As compared to low molecular weight polypeptides, high molecular weight AP1-ELP showed superior binding activity with faster entry and efficient processing in the IL-4R-dependent endocytic pathway. In addition, in vivo studies revealed that the high molecular weight micelle-forming AP1-ELPs (A86 and A100) displayed better tumor penetration and extensive retention in tumor tissue along with reduced non-specific accumulation in vital organs, when compared to low molecular weight non-micelle forming AP1-ELPs. It is suggested that the superior binding activities shown by A86 and A100 may depend on the multiple presentation of ligands upon transition to a micelle-like structure rather than a larger molecular weight. Thus, this study has significance in elucidating the different patterns underlying unimer and micelle-forming ELP-mediated tumor targeting as well as the in vivo biodistribution.


Asunto(s)
Antineoplásicos , Portadores de Fármacos , Elastina , Neoplasias/metabolismo , Péptidos , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Elastina/química , Elastina/metabolismo , Elastina/farmacocinética , Femenino , Humanos , Ratones Endogámicos BALB C , Micelas , Peso Molecular , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacocinética , Conformación Proteica , Receptores de Interleucina-4/química , Receptores de Interleucina-4/metabolismo , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Clin Cancer Res ; 25(16): 5069-5081, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31010838

RESUMEN

PURPOSE: New strategies to restore sodium iodide symporter (NIS) expression and function in radioiodine therapy-refractive anaplastic thyroid cancers (ATCs) are urgently required. Recently, we reported the regulatory role of estrogen-related receptor gamma (ERRγ) in ATC cell NIS function. Herein, we identified DN200434 as a highly potent (functional IC50 = 0.006 µmol/L), selective, and orally available ERRγ inverse agonist for NIS enhancement in ATC. EXPERIMENTAL DESIGN: We sought to identify better ERRγ-targeting ligands and explored the crystal structure of ERRγ in complex with DN200434. After treating ATC cells with DN200434, the change in iodide-handling gene expression, as well as radioiodine avidity was examined. ATC tumor-bearing mice were orally administered with DN200434, followed by 124I-positron emission tomography/CT (PET/CT). For radioiodine therapy, ATC tumor-bearing mice treated with DN200434 were administered 131I (beta ray-emitting therapeutic radioiodine) and then bioluminescent imaging was performed to monitor the therapeutic effects. Histologic analysis was performed to evaluate ERRγ expression status in normal tissue and ATC tissue, respectively. RESULTS: DN200434-ERRγ complex crystallographic studies revealed that DN200434 binds to key ERRγ binding pocket residues through four-way interactions. DN200434 effectively upregulated iodide-handling genes and restored radioiodine avidity in ATC tumor lesions, as confirmed by 124I-PET/CT. DN200434 enhanced ATC tumor radioiodine therapy susceptibility, markedly inhibiting tumor growth. Histologic findings of patients with ATC showed higher ERRγ expression in tumors than in normal tissue, supporting ERRγ as a therapeutic target for ATC. CONCLUSIONS: DN200434 shows potential clinical applicability for diagnosis and treatment of ATC or other poorly differentiated thyroid cancers.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Simportadores/genética , Carcinoma Anaplásico de Tiroides/genética , Carcinoma Anaplásico de Tiroides/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Inhibidores Enzimáticos del Citocromo P-450/uso terapéutico , Perros , Metabolismo Energético , Femenino , Humanos , Inmunohistoquímica , Ratones , Microsomas Hepáticos/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Unión Proteica , Ratas , Receptores de Estrógenos/química , Relación Estructura-Actividad , Simportadores/química , Simportadores/metabolismo , Carcinoma Anaplásico de Tiroides/diagnóstico , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico
16.
Transl Oncol ; 10(2): 262-270, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28214774

RESUMEN

Here, we sought to monitor bone marrow-derived dendritic cell (BMDC) migration and antitumor effects using a multimodal reporter imaging strategy in living mice. BMDCs were transduced with retroviral vector harboring human sodium iodide symporter (hNIS, nuclear imaging reporter), firefly luc2 (optical imaging reporter), and thy1.1 (surrogate marker of NIS and luc2) genes (BMDC/NF cells). No significant differences in biological functions, including cell proliferation, antigen uptake, phenotype expression, and migration ability, were observed between BMDC and BMDC/NF cells. Combined bioluminescence imaging and I-124 positron emission tomography/computed tomography clearly revealed the migration of BMDC/NF cells to draining popliteal lymph nodes at day 7 postinjection. Interestingly, marked tumor protection was observed in mice immunized with TC-1 lysate-pulsed BMDC/NF cells. Our findings suggested that multimodal reporter gene imaging of NIS and luciferase could provide insights into the biological behaviors of dendritic cells in living organisms and could be a useful tool for the optimization of DC-based immunotherapy protocols.

17.
Oncotarget ; 8(66): 109894-109914, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29299117

RESUMEN

In vivo biodistribution and fate of extracellular vesicles (EVs) are still largely unknown and require reliable in vivo tracking techniques. In this study, in vivo bioluminescence imaging (BLI) using Renilla luciferase (Rluc) was developed and applied to monitoring of EVs derived from thyroid cancer (CAL-62 cells) and breast cancer (MDA-MB-231) in nude mice after intravenous administration and was compared with a dye-based labeling method for EV derived from CAL-62 cells. The EVs were successfully labeled with Rluc and visualized by BLI in mice. In vivo distribution of the EVs, as measured by BLI, was consistent with the results of ex vivo organ analysis. EV-CAL-62/Rluc showed strong signals at lung followed by liver, spleen & kidney (P < 0.05). EV-MDA-MB-231/Rluc showed strong signals at liver followed by lung, spleen & kidney (P < 0.05). EV-CAL-62/Rluc and EV-MDA-MB-231/Rluc stayed in animal till day 9 and 3, respectively; showed a differential distribution. Spontaneous EV-CAL-62/Rluc shown distributed mostly to lung followed by liver, spleen & kidney. The new BLI system used to show spontaneous distribution of EV-CAL-62/Rluc in subcutaneous CAL-62/Rluc bearing mice. Dye (DiR)-labeled EV-CAL-62/Rluc showed a different distribution in vivo & ex vivo compared to EV-CAL-62/Rluc. Fluorescent signals were predominately detected in the liver (P < 0.05) and spleen (P < 0.05) regions. The bioluminescent EVs developed in this study may be used for monitoring of EVs in vivo. This novel reporter-imaging approach to visualization of EVs in real time is expected to pave the way for monitoring of EVs in EV-based treatments.

18.
Biomaterials ; 112: 192-203, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27768973

RESUMEN

The inability to monitor the in vivo dynamics of mast cells (MCs) limits the better understanding of its role in cancer progression. Here, we report on noninvasive imaging of MC migration to tumor lesions in mice and evaluation of the effects of migrated MCs on tumor progression through reporter gene-based in vivo optical imaging and glucose metabolism monitoring in cancer with 18F-fluorodeoxyglucose (18F-FDG) in vitro and in vivo. Murine MCs (MC-9) and Lewis lung cancer cells (LLC) expressing an enhanced firefly luciferase (effluc) gene were established, termed MC-9/effluc and LLC/effluc, respectively. MC-9/effluc cell migration to LLC tumor lesions was initially detected within 1 h post-transfer and distinct bioluminescence imaging signals emitted from MC-9/effluc cells were observed at tumor sites until 96 h. In vivo optical imaging as well as a biodistribution study with 18F-FDG demonstrated more rapid tumor growth and upregulated glucose uptake potentially associated with MC migration to tumor lesions. These results suggest that the combination of a reporter gene-based optical imaging approach and glucose metabolism status monitoring with 18F-FDG represents a promising tool to better understand the biological role of MCs in tumor microenvironments and to develop new therapeutic drugs to regulate their involvement in enhanced tumor growth.


Asunto(s)
Rastreo Celular/métodos , Glucosa/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Mastocitos/metabolismo , Mastocitos/patología , Microscopía Fluorescente/métodos , Animales , Línea Celular Tumoral , Femenino , Genes Reporteros/genética , Ratones , Ratones Endogámicos C57BL , Imagen Molecular/métodos , Invasividad Neoplásica
19.
Theranostics ; 7(4): 926-934, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28382164

RESUMEN

Reliable and sensitive imaging tools are required to track macrophage migration and provide a better understating of their biological roles in various diseases. Here, we demonstrate the possibility of radioactive iodide-embedded gold nanoparticles (RIe-AuNPs) as a cell tracker for nuclear medicine imaging. To demonstrate this utility, we monitored macrophage migration to carrageenan-induced sites of acute inflammation in living subjects and visualized the effects of anti-inflammatory agents on this process. Macrophage labeling with RIe-AuNPs did not alter their biological functions such as cell proliferation, phenotype marker expression, or phagocytic activity. In vivo imaging with positron-emission tomography revealed the migration of labeled macrophages to carrageenan-induced inflammation lesions 3 h after transfer, with highest recruitment at 6 h and a slight decline of radioactive signal at 24 h; these findings were highly consistent with the data of a bio-distribution study. Treatment with dexamethasone (an anti-inflammation drug) or GSK5182 (an ERRγ inverse agonist) hindered macrophage recruitment to the inflamed sites. Our findings suggest that a cell tracking strategy utilizing RIe-AuNPs will likely be highly useful in research related to macrophage-related disease and cell-based therapies.


Asunto(s)
Oro/análisis , Inflamación/patología , Radioisótopos de Yodo/análisis , Macrófagos/inmunología , Nanopartículas/análisis , Tomografía de Emisión de Positrones/métodos , Animales , Antiinflamatorios/administración & dosificación , Carragenina/administración & dosificación , Dexametasona/administración & dosificación , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Ratones , Tamoxifeno/administración & dosificación , Tamoxifeno/análogos & derivados
20.
Methods Mol Biol ; 1441: 297-306, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27177676

RESUMEN

Natural killer (NK) cells are cytotoxic lymphocytes that induce apoptosis in cancer cells infected with viruses and bacteria through a caspase-3-dependent pathway. Effective NK cell-based immunotherapy requires highly sensitive imaging tools for in vivo monitoring of the dynamic events involved in apoptosis. Here, we describe a noninvasive bioluminescence imaging approach to determine the antitumor effects of NK cell-based therapy by serial imaging of caspase-3-dependent apoptosis in a mouse model of human glioma.


Asunto(s)
Técnicas Biosensibles/métodos , Caspasa 3/metabolismo , Glioma/terapia , Células Asesinas Naturales/trasplante , Animales , Apoptosis , Línea Celular Tumoral , Citotoxicidad Inmunológica , Glioma/metabolismo , Humanos , Inmunoterapia Adoptiva , Mediciones Luminiscentes , Ratones , Trasplante de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA