Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37259828

RESUMEN

Polycystins are a family of conserved ion channels, mutations of which lead to one of the most common human genetic disorders, namely, autosomal dominant polycystic kidney disease. Schizosacchromyces pombe possesses an essential polycystin homologue, Pkd2, which directs Ca2+ influx on the cell surface in response to membrane tension, but its structure remains unsolved. Here, we analyzed the structure-function relationship of Pkd2 based on its AlphaFold-predicted structure. Pkd2 consists of three domains, the extracellular lipid-binding domain (LBD), nine-helix transmembrane domain (TMD) and C-terminal cytoplasmic domain (CCD). Our genetic and microscopy data revealed that LBD and TMD are essential for targeting Pkd2 to the plasma membrane from the endoplasmic reticulum. In comparison, CCD ensures the polarized distribution of Pkd2 by promoting its internalization and preventing its clustering in the eisosome, a caveolae-like membrane compartment. The domains of Pkd2 and their functions are conserved in other fission yeast species. We conclude that both extracellular and cytoplasmic domains of Pkd2 are crucial for its intracellular trafficking and function. We propose that mechanosensitive channels can be desensitized through either internalization or clustering in low-tension membrane compartments.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Schizosaccharomyces , Análisis por Conglomerados , Canales Iónicos/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Dominios Proteicos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
2.
J Cell Sci ; 135(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35099006

RESUMEN

Polycystins are conserved mechanosensitive channels whose mutations lead to the common human renal disorder autosomal dominant polycystic kidney disease (ADPKD). Previously, we discovered that the plasma membrane-localized fission yeast polycystin homolog Pkd2p is an essential protein required for cytokinesis; however, its role remains unclear. Here, we isolated a novel temperature-sensitive pkd2 mutant, pkd2-B42. Among the strong growth defects of this mutant, the most striking was that many mutant cells often lost a significant portion of their volume in just 5 min followed by a gradual recovery, a process that we termed 'deflation'. Unlike cell lysis, deflation did not result in plasma membrane rupture and occurred independently of cell cycle progression. The tip extension of pkd2-B42 cells was 80% slower than that of wild-type cells, and their turgor pressure was 50% lower. Both pkd2-B42 and the hypomorphic depletion mutant pkd2-81KD partially rescued mutants of the septation initiation network (SIN), a yeast Hippo-related signaling pathway, by preventing cell lysis, enhancing septum formation and doubling the number of Sid2p and Mob1p molecules at the spindle pole bodies. We conclude that Pkd2p promotes cell size expansion during interphase by regulating turgor pressure and antagonizes the SIN during cytokinesis. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transducción de Señal , Canales de Potencial de Receptor Transitorio , Ciclo Celular/fisiología , Humanos , Riñón Poliquístico Autosómico Dominante/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal/genética , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
4.
bioRxiv ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38293176

RESUMEN

Cytokinesis, the last step in cell division, separate daughter cells through the force produced by an actomyosin contractile ring assembled at the equatorial plane. In fission yeast cells, the ring helps recruit a mechanosensitive ion channel Pkd2 to the cleavage furrow, whose activation by membrane tension promotes calcium influx and daughter cell separation. However, it is unclear how the activities of Pkd2 may affect the actomyosin ring. Here, through both microscopic and genetic analyses of a hypomorphic mutant of the essential pkd2 gene, we examine its potential role in assembling and constricting the contractile ring. The pkd2-81KD mutation significantly increased the number of type II myosin heavy chain Myo2 (+20%), its regulatory light chain Rlc1 (+37%) and actin (+20%) molecules in the ring, compared to the wild type. Consistent with a regulatory role of Pkd2 in the ring assembly, we identified a strong negative genetic interaction between pkd2-81KD and the temperature-sensitive mutant myo2-E1 . The pkd2-81KD myo2-E1 cells often failed to assemble a complete contractile ring. We conclude that Pkd2 modulates the recruitment of type II myosin and actin to the contractile ring, suggesting a novel calcium- dependent mechanism regulating the actin cytoskeletal structures during cytokinesis.

5.
J Fungi (Basel) ; 10(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39057340

RESUMEN

Cytokinesis, the last step in cell division, separates daughter cells through mechanical force. This is often through the force produced by an actomyosin contractile ring. In fission yeast cells, the ring helps recruit a mechanosensitive ion channel, Pkd2, to the cleavage furrow, whose activation by membrane tension promotes calcium influx and daughter cell separation. However, it is unclear how the activities of Pkd2 may affect the actomyosin ring. Here, through both microscopic and genetic analyses of a hypomorphic pkd2 mutant, we examined the potential role of this essential gene in assembling the contractile ring. The pkd2-81KD mutation significantly increased the counts of the type II myosin heavy chain Myo2 (+18%), its regulatory light chain Rlc1 (+37%) and actin (+100%) molecules in the ring, compared to the wild type. Consistent with a regulatory role of Pkd2 in the ring assembly, we identified a strong negative genetic interaction between pkd2-81KD and the temperature-sensitive mutant myo2-E1. The pkd2-81KD myo2-E1 cells often failed to assemble a complete contractile ring. We conclude that Pkd2 modulates the recruitment of type II myosin and actin to the contractile ring, suggesting a novel calcium-dependent mechanism regulating the actin cytoskeletal structures during cytokinesis.

6.
Mol Biol Cell ; 30(15): 1791-1804, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31116668

RESUMEN

Force plays a central role in separating daughter cells during cytokinesis, the last stage of cell division. However, the mechanism of force sensing during cytokinesis remains unknown. Here we discovered that Pkd2p, a putative force-sensing transient receptor potential channel, localizes to the cleavage furrow during cytokinesis of the fission yeast, Schizosaccharomyces pombe. Pkd2p, whose human homologues are associated with autosomal polycystic kidney disease, is an essential protein whose localization depends on the contractile ring and the secretory pathway. We identified and characterized a novel pkd2 mutant pkd2-81KD. The pkd2 mutant cells show signs of osmotic stress, including temporary shrinking, paused turnover of the cytoskeletal structures, and hyperactivated mitogen-activated protein kinase signaling. During cytokinesis, although the contractile ring constricts more rapidly in the pkd2 mutant than the wild-type cells (50% higher), the cell separation in the mutant is slower and often incomplete. These cytokinesis defects are also consistent with misregulated turgor pressure. Finally, the pkd2 mutant exhibits strong genetic interactions with two mutants of the septation initiation network pathway, a signaling cascade essential for cytokinesis. We propose that Pkd2p modulates osmotic homeostasis and is potentially a novel regulator of cytokinesis.


Asunto(s)
Citocinesis , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Proliferación Celular , Epistasis Genética , Genes Esenciales , Mutación/genética , Transporte de Proteínas , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA