Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 60(18): 14349-14356, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34478282

RESUMEN

One ongoing challenge in the field of iridium-based water oxidation catalysts is to develop a molecular precatalyst affording well-defined homogeneous active species for catalysis. Our previous work by using organometallic precatalysts Cp*Ir(pyalk)OH and Ir(pyalk)(CO)2 (pyalk = (2-pyridyl)-2-propanolate) suggested a µ-oxo-bridged Ir dimer as the probable resting state, although the structure of the active species remained elusive. During the activation, the ligands Cp* and CO were found to oxidatively degrade into acetic acid or other products, which coordinate to Ir centers and affect the catalytic reaction. Two related dimers bearing two pyalk ligands on each iridium were crystallized for structural analysis. However, preliminary results indicated that these crystallographically characterized dimers are not active catalysts. In this work, we accessed a mixture of dinuclear iridium species from a coordination precursor, Na[Ir(pyalk)Cl4], and assayed their catalytic activity for oxygen evolution by using NaIO4 as the oxidant. This catalyst showed comparable oxygen-evolution activity to the ones previously reported from organometallic precursors without demanding oxidative activation to remove sacrificial ligands. Future research along this direction is expected to provide insights and design principles toward a well-defined active species.

2.
Acc Chem Res ; 50(4): 952-959, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28272869

RESUMEN

Water-oxidation catalysis is a critical bottleneck in the direct generation of solar fuels by artificial photosynthesis. Catalytic oxidation of difficult substrates such as water requires harsh conditions, so the ligand must be designed both to stabilize high oxidation states of the metal center and to strenuously resist ligand degradation. Typical ligand choices either lack sufficient electron donor power or fail to stand up to the oxidizing conditions. Our research on Ir-based water-oxidation catalysts (WOCs) has led us to identify a ligand, 2-(2'-pyridyl)-2-propanoate or "pyalk", that fulfills these requirements. Work with a family of Cp*Ir(chelate)Cl complexes had indicated that the pyalk-containing precursor gave the most robust WOC, which was still molecular in nature but lost the Cp* fragment by oxidative degradation. In trying to characterize the resulting active "blue solution" WOC, we were able to identify a diiridium(IV)-mono-µ-oxo core but were stymied by the extensive geometrical isomerism and coordinative variability. By moving to a family of monomeric complexes [IrIII/IV(pyalk)3] and [IrIII/IV(pyalk)2Cl2], we were able to better understand the original WOC and identify the special properties of the ligand. In this Account, we cover some results using the pyalk ligand and indicate the main features that make it particularly suitable as a ligand for oxidation catalysis. The alkoxide group of pyalk allows for proton-coupled electron transfer (PCET) and its strong σ- and π-donor power strongly favors attainment of exceptionally high oxidation states. The aromatic pyridine ring with its methyl-protected benzylic position provides strong binding and degradation resistance during catalytic turnover. Furthermore, the ligand has two additional benefits: broad solubility in aqueous and nonaqueous solvents and an anisotropic ligand field that enhances the geometry-dependent redox properties of its complexes. After discussion of the general properties, we highlight the specific complexes studied in more detail. In the iridium work, the isolated mononuclear complexes showed easily accessible Ir(III/IV) redox couples, in some cases with the Ir(IV) state being indefinitely stable in water. We were able to rationalize the unusual geometry-dependent redox properties of the various isomers on the basis of ligand-field effects. Even more striking was the isolation and full characterization of a stable Rh(IV) state, for which prior examples were very reactive and poorly characterized. Importantly, we were able to convert monomeric Ir complexes to [Cl(pyalk)2IrIV-O-IrIVCl(pyalk)2] derivatives that help model the "blue solution" properties and provide groundwork for rational synthesis of active, well-defined WOCs. More recent work has moved toward the study of first-row transition metal complexes. Manganese-based studies have highlighted the importance of the chelate effect for labile metals, leading to the synthesis of pincer-type pyalk derivatives. Beyond water oxidation, we believe the pyalk ligand and its derivatives will also prove useful in other oxidative transformations.

3.
Inorg Chem ; 57(9): 5684-5691, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29634253

RESUMEN

We report a general method for the preparation and crystallization of highly oxidized metal complexes that are difficult to prepare and handle by more conventional means. This method improves typical bulk electrolysis and crystallization conditions for these reactive species by substituting oxidation-prone organic electrolytes and precipitants with oxidation-resistant compounds. Specifically, we find that CsPF6 is an effective inert electrolyte in acetonitrile, and appears to have general applicability to electrochemical studies in this solvent. Likewise, CCl4 is not only an oxidation-resistant precipitant for crystallization from MeCN but it also enters the lattice. In this way, we synthesized and characterized an Ir(V,V) mono-µ-oxo dimer which only forms at a very high potential (1.9 V vs NHE). This compound, having the highest isolated oxidation state in this redox-active system, cannot be formed chemically. DFT calculations show that the oxidation is centered on the Ir-O-Ir core and facilitated by strong electron-donation from the pyalk (2-(2-pyridinyl)-2-propanolate) ligand. TD-DFT simulations of the UV-visible spectrum reveal that its royal blue color arises from electron excitations with mixed LMCT and Laporte-allowed d-d character. We have also crystallographically characterized a related monomeric Ir(V) complex, similarly prepared by oxidizing a previously reported Ir(IV) compound at 1.7 V, underscoring the general applicability of this method.

4.
J Am Chem Soc ; 139(28): 9672-9683, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28648068

RESUMEN

Chemical and electrochemical oxidation or reduction of our recently reported Ir(IV,IV) mono-µ-oxo dimers results in the formation of fully characterized Ir(IV,V) and Ir(III,III) complexes. The Ir(IV,V) dimers are unprecedented and exhibit remarkable stability under ambient conditions. This stability and modest reduction potential of 0.99 V vs NHE is in part attributed to complete charge delocalization across both Ir centers. Trends in crystallographic bond lengths and angles shed light on the structural changes accompanying oxidation and reduction. The similarity of these mono-µ-oxo dimers to our Ir "blue solution" water-oxidation catalyst gives insight into potential reactive intermediates of this structurally elusive catalyst. Additionally, a highly reactive material, proposed to be a Ir(V,V) µ-oxo species, is formed on electrochemical oxidation of the Ir(IV,V) complex in organic solvents at 1.9 V vs NHE. Spectroelectrochemistry shows reversible conversion between the Ir(IV,V) and proposed Ir(V,V) species without any degradation, highlighting the exceptional oxidation resistance of the 2-(2-pyridinyl)-2-propanolate (pyalk) ligand and robustness of these dimers. The Ir(III,III), Ir(IV,IV) and Ir(IV,V) redox states have been computationally studied both with DFT and multiconfigurational calculations. The calculations support the stability of these complexes and provide further insight into their electronic structures.

5.
Angew Chem Int Ed Engl ; 56(42): 13047-13051, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28815915

RESUMEN

We have prepared and fully characterized two isomers of [IrIV (dpyp)2 ] (dpyp=meso-2,4-di(2-pyridinyl)-2,4-pentanediolate). These complexes can cleanly oxidize to [IrV (dpyp)2 ]+ , which to our knowledge represent the first mononuclear coordination complexes of IrV in an N,O-donor environment. One isomer has been fully characterized in the IrV state, including by X-ray crystallography, XPS, and DFT calculations, all of which confirm metal-centered oxidation. The unprecedented stability of these IrV complexes is ascribed to the exceptional donor strength of the ligands, their resistance to oxidative degradation, and the presence of four highly donor alkoxide groups in a plane, which breaks the degeneracy of the d-orbitals and favors oxidation.

6.
J Am Chem Soc ; 138(49): 15917-15926, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960326

RESUMEN

The highly active iridium "blue solution" chemical and electrochemical water oxidation catalyst obtained from Cp*IrL(OH) precursors (L = 2-pyridyl-2-propanoate) has been difficult to characterize as no crystal structure can be obtained because of the multiplicity of geometrical isomers present. Other data suggest complete loss of the Cp* ligand and the formation of a LIr-O-IrL unit. We have now developed a route to a series of well-defined Ir(IV,IV) mono-µ-oxo dimers, containing the closely related L2Ir-O-IrL2 unit. Unlike the catalyst, these model compounds are separable by silica gel chromatography and readily form single crystals. We report three stereoisomers with the formula ClL2Ir-O-IrL2Cl, which are fully characterized, including by X-ray crystallography, and are compared to the "blue solution". To the best of our knowledge, these species represent the first examples of structurally characterized dinuclear µ-oxo Ir(IV,IV) compounds without metal-carbon bonds.

7.
J Am Chem Soc ; 135(37): 13843-50, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-23895677

RESUMEN

A paradigm shift from hard to flexible, organic-based optoelectronics requires fast and reversible mechanical response from actuating materials that are used for conversion of heat or light into mechanical motion. As the limits in the response times of polymer-based actuating materials are reached, which are inherent to the less-than-optimal coupling between the light/heat and mechanical energy in them, a conceptually new approach to mechanical actuation is required to leapfrog the performance of organic actuators. Herein, we explore single crystals of 1,2,4,5-tetrabromobenzene (TBB) as actuating elements and establish relations between their kinematic profile and mechanical properties. Centimeter-size acicular crystals of TBB are the only naturally twinned crystals out of about a dozen known materials that exhibit the thermosalient effect-an extremely rare and visually impressive crystal locomotion. When taken over a phase transition, crystals of this material store mechanical strain and are rapidly self-actuated to sudden jumps to release the internal strain, leaping up to several centimeters. To establish the structural basis for this colossal crystal motility, we investigated the mechanical profile of the crystals from macroscale, in response to externally induced deformation under microscope, to nanoscale, by using nanoindentation. Kinematic analysis based on high-speed recordings of over 200 twinned TBB crystals exposed to directional or nondirectional heating unraveled that the crystal locomotion is a kinematically complex phenomenon that includes at least six kinematic effects. The nanoscale tests confirm the highly elastic nature, with an elastic deformation recovery (60%) that is far superior to those of molecular crystals reported earlier. This property appears to be critical for accumulation of stress required for crystal jumping. Twinned crystals of TBB exposed to moderate directional heating behave as all-organic analogue of a bimetallic strip, where the lattice misfit between the two crystal components drives reversible deformation of the crystal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA