Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur Heart J ; 42(43): 4481-4492, 2021 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-34297830

RESUMEN

AIMS: Cardiac injury and remodelling are associated with the rearrangement of cardiac lipids. Glycosphingolipids are membrane lipids that are important for cellular structure and function, and cardiac dysfunction is a characteristic of rare monogenic diseases with defects in glycosphingolipid synthesis and turnover. However, it is not known how cardiac glycosphingolipids regulate cellular processes in the heart. The aim of this study is to determine the role of cardiac glycosphingolipids in heart function. METHODS AND RESULTS: Using human myocardial biopsies, we showed that the glycosphingolipids glucosylceramide and lactosylceramide are present at very low levels in non-ischaemic human heart with normal function and are elevated during remodelling. Similar results were observed in mouse models of cardiac remodelling. We also generated mice with cardiomyocyte-specific deficiency in Ugcg, the gene encoding glucosylceramide synthase (hUgcg-/- mice). In 9- to 10-week-old hUgcg-/- mice, contractile capacity in response to dobutamine stress was reduced. Older hUgcg-/- mice developed severe heart failure and left ventricular dilatation even under baseline conditions and died prematurely. Using RNA-seq and cell culture models, we showed defective endolysosomal retrograde trafficking and autophagy in Ugcg-deficient cardiomyocytes. We also showed that responsiveness to ß-adrenergic stimulation was reduced in cardiomyocytes from hUgcg-/- mice and that Ugcg knockdown suppressed the internalization and trafficking of ß1-adrenergic receptors. CONCLUSIONS: Our findings suggest that cardiac glycosphingolipids are required to maintain ß-adrenergic signalling and contractile capacity in cardiomyocytes and to preserve normal heart function.


Asunto(s)
Glucosiltransferasas , Miocitos Cardíacos , Animales , Cardiomegalia , Glucosiltransferasas/genética , Ratones , Receptores Adrenérgicos
2.
Metabolomics ; 17(12): 103, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34816353

RESUMEN

INTRODUCTION: Poly-/per-fluoroalkyl substances (PFAS) are widespread environmental pollutants that may induce metabolic perturbations in humans, including particularly alterations in lipid profiles. Prenatal exposure to PFAS can cause lasting effects on offspring metabolic health, however, the underlying mechanisms are still unknown. OBJECTIVES: The goal of the study was to investigate the impact of prenatal PFAS exposure on the lipid profiles in cord blood. METHODS: Herein, we combined determination of bile acids (BAs) and molecular lipids by liquid chromatography with ultra-high-resolution mass spectrometry, and separately quantified cord blood concentrations of sixteen PFAS in a cohort of Chinese infants (104 subjects) in a cross-sectional study. We then evaluated associations between PFAS concentration and lipidome using partial correlation network analysis, debiased sparse partial correlation, linear regression analysis and correlation analysis. RESULTS: PFAS levels showed significant associations with the lipid profiles; specifically, PFAS exposure was positively correlated with triacylgycerols (TG) and several bile acids. Importantly, exposure to perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS) were associated with increased levels of TGs with saturated fatty acids while multiple classes of phospholipids were decreased. In addition, several free fatty acids showed significant positive correlations with PFOS. CONCLUSIONS: Our results indicated that prenatal exposure to PFAS mediated metabolic changes, which may explain the associations reported between PFAS exposure and metabolic health later in life.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Efectos Tardíos de la Exposición Prenatal , Estudios Transversales , Femenino , Sangre Fetal , Humanos , Metabolómica , Embarazo
3.
Anal Bioanal Chem ; 412(10): 2251-2259, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31760452

RESUMEN

There is evidence of a positive association between per- and polyfluoroalkyl substances (PFASs) and cholesterol levels in human plasma, which may be due to common reabsorption of PFASs and bile acids (BAs) in the gut. Here we report development and validation of a method that allows simultaneous, quantitative determination of PFASs and BAs in plasma, using 150 µL or 20 µL of sample. The method involves protein precipitation using 96-well plates. The instrumental analysis was performed with ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS), using reverse-phase chromatography, with the ion source operated in negative electrospray mode. The mass spectrometry analysis was carried out using multiple reaction monitoring mode. The method proved to be sensitive, robust, and with sufficient linear range to allow reliable determination of both PFASs and BAs. The method detection limits were between 0.01 and 0.06 ng mL-1 for PFASs and between 0.002 and 0.152 ng mL-1 for BAs, with the exception of glycochenodeoxycholic acid (0.56 ng mL-1). The PFAS measured showed excellent agreement with certified plasma PFAS concentrations in NIST SRM 1957 reference serum. The method was tested on serum samples from 20 healthy individuals. In this proof-of-concept study, we identified significant associations between plasma PFAS and BA levels, which suggests that PFAS may alter the synthesis and/or uptake of BAs. Graphical Abstract.


Asunto(s)
Ácidos y Sales Biliares/química , Cromatografía Líquida de Alta Presión/métodos , Fluorocarburos/química , Espectrometría de Masas en Tándem/métodos , Fluorocarburos/sangre , Humanos , Límite de Detección , Plasma/química , Suero/química
4.
Environ Res ; 188: 109864, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32846648

RESUMEN

Celiac disease (CD) is a systemic immune-mediated disorder with increased frequency in the developed countries over the last decades implicating the potential causal role of various environmental triggers in addition to gluten. Herein, we apply determination of perfluorinated alkyl substances (PFAS) and combine the results with the determination of bile acids (BAs) and molecular lipids, with the aim to elucidate the impact of prenatal exposure on risk of progression to CD in a prospective series of children prior the first exposure to gluten (at birth and at 3 months of age). Here we analyzed PFAS, BAs and lipidomic profiles in 66 plasma samples at birth and at 3 months of age in the Type 1 Diabetes Prediction and Prevention (DIPP) study (n = 17 progressors to CD, n = 16 healthy controls, HCs). Plasma PFAS levels showed a significant inverse association with the age of CD diagnosis in infants who later progressed to the disease. Associations between BAs and triacylglycerols (TGs) showed different patterns already at birth in CD progressors, indicative of different absorption of lipids in these infants. In conclusion, PFAS exposure may modulate lipid and BA metabolism, and the impact is different in the infants who develop CD later in life, in comparison to HCs. The results indicate more efficient uptake of PFAS in such infants. Higher PFAS exposure during prenatal and early life may accelerate the progression to CD in the genetically predisposed children.


Asunto(s)
Enfermedad Celíaca , Fluorocarburos , Enfermedad Celíaca/inducido químicamente , Niño , Femenino , Fluorocarburos/toxicidad , Humanos , Lactante , Metabolismo de los Lípidos , Parto , Embarazo , Estudios Prospectivos , Triglicéridos
5.
Environ Int ; 190: 108820, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38906088

RESUMEN

PFAS are ubiquitous industrial chemicals with known adverse health effects, particularly on the liver. The liver, being a vital metabolic organ, is susceptible to PFAS-induced metabolic dysregulation, leading to conditions such as hepatotoxicity and metabolic disturbances. In this study, we investigated the phenotypic and metabolic responses of PFAS exposure using two hepatocyte models, HepG2 (male cell line) and HepaRG (female cell line), aiming to define phenotypic alterations, and metabolic disturbances at the metabolite and pathway levels. The PFAS mixture composition was selected based on epidemiological data, covering a broad concentration spectrum observed in diverse human populations. Phenotypic profiling by Cell Painting assay disclosed predominant effects of PFAS exposure on mitochondrial structure and function in both cell models as well as effects on F-actin, Golgi apparatus, and plasma membrane-associated measures. We employed comprehensive metabolic characterization using liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS). We observed dose-dependent changes in the metabolic profiles, particularly in lipid, steroid, amino acid and sugar and carbohydrate metabolism in both cells as well as in cell media, with HepaRG cell line showing a stronger metabolic response. In cells, most of the bile acids, acylcarnitines and free fatty acids showed downregulation, while medium-chain fatty acids and carnosine were upregulated, while the cell media showed different response especially in relation to the bile acids in HepaRG cell media. Importantly, we observed also nonmonotonic response for several phenotypic features and metabolites. On the pathway level, PFAS exposure was also associated with pathways indicating oxidative stress and inflammatory responses. Taken together, our findings on PFAS-induced phenotypic and metabolic disruptions in hepatocytes shed light on potential mechanisms contributing to the broader comprehension of PFAS-related health risks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA