Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nucleic Acids Res ; 47(21): 11403-11417, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31598697

RESUMEN

Exposure to harmful conditions such as radiation and desiccation induce oxidative stress and DNA damage. In radiation-resistant Deinococcus bacteria, the radiation/desiccation response is controlled by two proteins: the XRE family transcriptional repressor DdrO and the COG2856 metalloprotease IrrE. The latter cleaves and inactivates DdrO. Here, we report the biochemical characterization and crystal structure of DdrO, which is the first structure of a XRE protein targeted by a COG2856 protein. DdrO is composed of two domains that fold independently and are separated by a flexible linker. The N-terminal domain corresponds to the DNA-binding domain. The C-terminal domain, containing three alpha helices arranged in a novel fold, is required for DdrO dimerization. Cleavage by IrrE occurs in the loop between the last two helices of DdrO and abolishes dimerization and DNA binding. The cleavage site is hidden in the DdrO dimer structure, indicating that IrrE cleaves DdrO monomers or that the interaction with IrrE induces a structural change rendering accessible the cleavage site. Predicted COG2856/XRE regulatory protein pairs are found in many bacteria, and available data suggest two different molecular mechanisms for stress-induced gene expression: COG2856 protein-mediated cleavage or inhibition of oligomerization without cleavage of the XRE repressor.


Asunto(s)
Deinococcus , Proteínas Represoras/química , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de la radiación , Factores de Transcripción/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Daño del ADN , Deinococcus/enzimología , Deinococcus/genética , Deinococcus/metabolismo , Deinococcus/efectos de la radiación , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Metaloproteasas/química , Metaloproteasas/genética , Metaloproteasas/metabolismo , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Factores de Transcripción/genética
2.
Nature ; 502(7473): 681-4, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24097349

RESUMEN

Magnetotactic bacteria align along the Earth's magnetic field using an organelle called the magnetosome, a biomineralized magnetite (Fe(II)Fe(III)2O4) or greigite (Fe(II)Fe(III)2S4) crystal embedded in a lipid vesicle. Although the need for both iron(II) and iron(III) is clear, little is known about the biological mechanisms controlling their ratio. Here we present the structure of the magnetosome-associated protein MamP and find that it is built on a unique arrangement of a self-plugged PDZ domain fused to two magnetochrome domains, defining a new class of c-type cytochrome exclusively found in magnetotactic bacteria. Mutational analysis, enzyme kinetics, co-crystallization with iron(II) and an in vitro MamP-assisted magnetite production assay establish MamP as an iron oxidase that contributes to the formation of iron(III) ferrihydrite eventually required for magnetite crystal growth in vivo. These results demonstrate the molecular mechanisms of iron management taking place inside the magnetosome and highlight the role of magnetochrome in iron biomineralization.


Asunto(s)
Bacterias/citología , Bacterias/metabolismo , Óxido Ferrosoférrico/metabolismo , Magnetosomas/metabolismo , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia Conservada , Compuestos Férricos/metabolismo , Genes Bacterianos/genética , Hierro/metabolismo , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Electricidad Estática
3.
Biochem J ; 475(23): 3779-3795, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30389844

RESUMEN

Methionine (Met) is prone to oxidation and can be converted to Met sulfoxide (MetO), which exists as R- and S-diastereomers. MetO can be reduced back to Met by the ubiquitous methionine sulfoxide reductase (Msr) enzymes. Canonical MsrA and MsrB were shown to be absolutely stereospecific for the reduction of S-diastereomer and R-diastereomer, respectively. Recently, a new enzymatic system, MsrQ/MsrP which is conserved in all gram-negative bacteria, was identified as a key actor for the reduction of oxidized periplasmic proteins. The haem-binding membrane protein MsrQ transmits reducing power from the electron transport chains to the molybdoenzyme MsrP, which acts as a protein-MetO reductase. The MsrQ/MsrP function was well established genetically, but the identity and biochemical properties of MsrP substrates remain unknown. In this work, using the purified MsrP enzyme from the photosynthetic bacteria Rhodobacter sphaeroides as a model, we show that it can reduce a broad spectrum of protein substrates. The most efficiently reduced MetO is found in clusters, in amino acid sequences devoid of threonine and proline on the C-terminal side. Moreover, R. sphaeroides MsrP lacks stereospecificity as it can reduce both R- and S-diastereomers of MetO, similarly to its Escherichia coli homolog, and preferentially acts on unfolded oxidized proteins. Overall, these results provide important insights into the function of a bacterial envelop protecting system, which should help understand how bacteria cope in harmful environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Metionina/análogos & derivados , Rhodobacter sphaeroides/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Metionina/química , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Mutación , Oxidación-Reducción , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Estereoisomerismo , Especificidad por Sustrato
4.
J Biol Chem ; 289(35): 24263-74, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25002576

RESUMEN

Acetyl-CoA plays a fundamental role in cell signaling and metabolic pathways, with its cellular levels tightly controlled through reciprocal regulation of enzymes that mediate its synthesis and catabolism. ACOT12, the primary acetyl-CoA thioesterase in the liver of human, mouse, and rat, is responsible for cleavage of the thioester bond within acetyl-CoA, producing acetate and coenzyme A for a range of cellular processes. The enzyme is regulated by ADP and ATP, which is believed to be mediated through the ligand-induced oligomerization of the thioesterase domains, whereby ATP induces active dimers and tetramers, whereas apo- and ADP-bound ACOT12 are monomeric and inactive. Here, using a range of structural and biophysical techniques, it is demonstrated that ACOT12 is a trimer rather than a tetramer and that neither ADP nor ATP exert their regulatory effects by altering the oligomeric status of the enzyme. Rather, the binding site and mechanism of ADP regulation have been determined to occur through two novel regulatory regions, one involving a large loop that links the thioesterase domains (Phe(154)-Thr(178)), defined here as RegLoop1, and a second region involving the C terminus of thioesterase domain 2 (Gln(304)-Gly(326)), designated RegLoop2. Mutagenesis confirmed that Arg(312) and Arg(313) are crucial for this mode of regulation, and novel interactions with the START domain are presented together with insights into domain swapping within eukaryotic thioesterases for substrate recognition. In summary, these experiments provide the first structural insights into the regulation of this enzyme family, revealing an alternate hypothesis likely to be conserved throughout evolution.


Asunto(s)
Lípidos/química , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Tioléster Hidrolasas/metabolismo , Cromatografía en Gel , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dispersión del Ángulo Pequeño , Tioléster Hidrolasas/química
5.
mBio ; 15(6): e0023024, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682935

RESUMEN

Strict management of intracellular heme pools, which are both toxic and beneficial, is crucial for bacterial survival during infection. The human pathogen Staphylococcus aureus uses a two-component heme sensing system (HssRS), which counteracts environmental heme toxicity by triggering expression of the efflux transporter HrtBA. The HssS heme sensor is a HisKA-type histidine kinase, characterized as a membrane-bound homodimer containing an extracellular sensor and a cytoplasmic conserved catalytic domain. To elucidate HssS heme-sensing mechanism, a structural simulation of the HssS dimer based on Alphafold2 was docked with heme. In this model, a heme-binding site is present in the HssS dimer between the membrane and extracellular domains. Heme is embedded in the membrane bilayer with its two protruding porphyrin propionates interacting with two conserved Arg94 and Arg163 that are located extracellularly. Single substitutions of these arginines and two highly conserved phenylalanines, Phe25 and Phe128, in the predicted hydrophobic pocket limited the ability of HssS to induce HrtBA synthesis. Combination of the four substitutions abolished HssS activation. Wild-type (WT) HssS copurified with heme from Escherichia coli, whereas heme binding was strongly attenuated in the variants. This study gives evidence that exogenous heme interacts with HssS at the membrane/extracellular interface to initiate HssS activation and induce HrtBA-mediated heme extrusion from the membrane. This "gatekeeper" mechanism could limit intracellular diffusion of exogenous heme in S. aureus and may serve as a paradigm for how efflux transporters control detoxification of exogenous hydrophobic stressors.IMPORTANCEIn the host blood, pathogenic bacteria are exposed to the red pigment heme that concentrates in their lipid membranes, generating cytotoxicity. To overcome heme toxicity, Staphylococcus aureus expresses a membrane sensor protein, HssS. Activation of HssS by heme triggers a phosphotransfer mechanism leading to the expression of a heme efflux system, HrtBA. This detoxification system prevents intracellular accumulation of heme. Our structural and functional data reveal a heme-binding hydrophobic cavity in HssS within the transmembrane domains (TM) helices at the interface with the extracellular domain. This structural pocket is important for the function of HssS as a heme sensor. Our findings provide a new basis for the elucidation of pathogen-sensing mechanisms as a prerequisite to the discovery of inhibitors.


Asunto(s)
Proteínas Bacterianas , Hemo , Transducción de Señal , Staphylococcus aureus , Hemo/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Histidina Quinasa/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/química , Regulación Bacteriana de la Expresión Génica , Sitios de Unión , Membrana Celular/metabolismo
6.
Biochim Biophys Acta ; 1822(9): 1397-410, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22465940

RESUMEN

The importance of peroxisomes in lipid metabolism is now well established and peroxisomes contain approximately 60 enzymes involved in these lipid metabolic pathways. Several acyl-CoA thioesterase enzymes (ACOTs) have been identified in peroxisomes that catalyze the hydrolysis of acyl-CoAs (short-, medium-, long- and very long-chain), bile acid-CoAs, and methyl branched-CoAs, to the free fatty acid and coenzyme A. A number of acyltransferase enzymes, which are structurally and functionally related to ACOTs, have also been identified in peroxisomes, which conjugate (or amidate) bile acid-CoAs and acyl-CoAs to amino acids, resulting in the production of amidated bile acids and fatty acids. The function of ACOTs is to act as auxiliary enzymes in the α- and ß-oxidation of various lipids in peroxisomes. Human peroxisomes contain at least two ACOTs (ACOT4 and ACOT8) whereas mouse peroxisomes contain six ACOTs (ACOT3, 4, 5, 6, 8 and 12). Similarly, human peroxisomes contain one bile acid-CoA:amino acid N-acyltransferase (BAAT), whereas mouse peroxisomes contain three acyltransferases (BAAT and acyl-CoA:amino acid N-acyltransferases 1 and 2: ACNAT1 and ACNAT2). This review will focus on the human and mouse peroxisomal ACOT and acyltransferase enzymes identified to date and discuss their cellular localizations, emerging structural information and functions as auxiliary enzymes in peroxisomal metabolic pathways.


Asunto(s)
Aciltransferasas/fisiología , Metabolismo de los Lípidos , Palmitoil-CoA Hidrolasa/fisiología , Peroxisomas/enzimología , Acilcoenzima A/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Ácidos Cólicos/sangre , Ácidos Cólicos/genética , Humanos , Hidrólisis , Modelos Moleculares , Palmitoil-CoA Hidrolasa/química , Palmitoil-CoA Hidrolasa/metabolismo , Peroxisomas/metabolismo , Conformación Proteica , Errores Congénitos del Metabolismo Esteroideo/enzimología , Errores Congénitos del Metabolismo Esteroideo/genética
7.
Res Sq ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37886592

RESUMEN

Homeostatic plasticity, the ability of neurons to maintain their averaged activity constant around a set point value, is thought to account for the central hyperactivity after hearing loss. Here, we investigated the putative role of GABAergic neurotransmission in this mechanism after a noise-induced hearing loss larger than 50 dB in high frequencies in guinea pigs. The effect of GABAergic inhibition is linked to the normal functioning of K+-Cl- co-transporter isoform 2 (KCC2) which maintains a low intracellular concentration of chloride. The expression of membrane KCC2 were investigated before after noise trauma in the ventral and dorsal cochlear nucleus (VCN and DCN, respectively) and in the inferior colliculus (IC). Moreover, the effect of gabazine (GBZ), a GABA antagonist, was also studied on the neural activity in IC. We show that KCC2 is downregulated in VCN, DCN and IC 3 days after noise trauma, and in DCN and IC 30 days after the trauma. As expected, GBZ application in the IC of control animals resulted in an increase of spontaneous and stimulus-evoked activity. In the noise exposed animals, on the other hand, GBZ application decreased the stimulus-evoked activity in IC neurons. The functional implications of these central changes are discussed.

8.
Biochem Soc Trans ; 40(6): 1319-23, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23176475

RESUMEN

Magnetotactic bacteria consist of a group of taxonomically, physiologically and morphologically diverse prokaryotes, with the singular ability to align with geomagnetic field lines, a phenomenon referred to as magnetotaxis. This magnetotactic property is due to the presence of iron-rich crystals embedded in lipidic vesicles forming an organelle called the magnetosome. Magnetosomes are composed of single-magnetic-domain nanocrystals of magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4)) embedded in biological membranes, thereby forming a prokaryotic organelle. Four specific steps are described in this organelle formation: (i) membrane specialization, (ii) iron acquisition, (iii) magnetite (or greigite) biocrystallization, and (iv) magnetosome alignment. The formation of these magnetic crystals is a genetically controlled process, which is governed by enzyme-catalysed processes. On the basis of protein sequence analysis of genes known to be involved in magnetosome formation in Magnetospirillum magneticum AMB-1, we have identified a subset of three membrane-associated or periplasmic proteins containing a double cytochrome c signature motif CXXCH: MamE, MamP and MamT. The presence of these proteins suggests the existence of an electron-transport chain inside the magnetosome, contributing to the process of biocrystallization. We have performed heterologous expression in E. coli of the cytochrome c motif-containing domains of MamE, MamP and MamT. Initial biophysical characterization has confirmed that MamE, MamP and MamT are indeed c-type cytochromes. Furthermore, determination of redox potentials for this new family of c-type cytochromes reveals midpoint potentials of -76 and -32 mV for MamP and MamE respectively.


Asunto(s)
Magnetosomas/metabolismo , Magnetospirillum/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalización , Grupo Citocromo c/química , Grupo Citocromo c/genética , Grupo Citocromo c/metabolismo , Transporte de Electrón , Magnetosomas/genética , Magnetosomas/fisiología , Magnetospirillum/metabolismo , Magnetospirillum/fisiología , Datos de Secuencia Molecular , Oxidación-Reducción , Estructura Terciaria de Proteína
9.
J Biol Chem ; 285(34): 25875-9, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20592035

RESUMEN

The early B-cell factor (EBF) transcription factors are central regulators of development in several organs and tissues. This protein family shows low sequence similarity to other protein families, which is why structural information for the functional domains of these proteins is crucial to understand their biochemical features. We have used a modular approach to determine the crystal structures of the structured domains in the EBF family. The DNA binding domain reveals a striking resemblance to the DNA binding domains of the Rel homology superfamily of transcription factors but contains a unique zinc binding structure, termed zinc knuckle. Further the EBF proteins contain an IPT/TIG domain and an atypical helix-loop-helix domain with a novel type of dimerization motif. The data presented here provide insights into unique structural features of the EBF proteins and open possibilities for detailed molecular investigations of this important transcription factor family.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-rel/química , Transactivadores/química , Cristalografía por Rayos X , Humanos , Conformación Proteica , Multimerización de Proteína , Homología Estructural de Proteína , Factores de Transcripción/química , Zinc/química , Zinc/metabolismo
10.
Anal Biochem ; 401(1): 74-80, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20175983

RESUMEN

G protein-coupled receptors (GPCRs) represent approximately 3% of the human proteome. They are involved in a large number of diverse processes and, therefore, are the most prominent class of pharmacological targets. Besides rhodopsin, X-ray structures of classical GPCRs have only recently been resolved, including the beta1 and beta2 adrenergic receptors and the A2A adenosine receptor. This lag in obtaining GPCR structures is due to several tedious steps that are required before beginning the first crystallization experiments: protein expression, detergent solubilization, purification, and stabilization. With the aim to obtain active membrane receptors for functional and crystallization studies, we recently reported a screen of expression conditions for approximately 100 GPCRs in Escherichia coli, providing large amounts of inclusion bodies, a prerequisite for the subsequent refolding step. Here, we report a novel artificial chaperone-assisted refolding procedure adapted for the GPCR inclusion body refolding, followed by protein purification and characterization. The refolding of two selected targets, the mouse cannabinoid receptor 1 (muCB1R) and the human parathyroid hormone receptor 1 (huPTH1R), was achieved from solubilized receptors using detergent and cyclodextrin as protein folding assistants. We could demonstrate excellent affinity of both refolded and purified receptors for their respective ligands. In conclusion, this study suggests that the procedure described here can be widely used to refold GPCRs expressed as inclusion bodies in E. coli.


Asunto(s)
Escherichia coli/metabolismo , Receptor Cannabinoide CB1/química , Receptor de Hormona Paratiroídea Tipo 1/química , Animales , Ciclodextrinas/química , Humanos , Cuerpos de Inclusión/metabolismo , Ratones , Unión Proteica , Pliegue de Proteína , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/genética , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Antioxidants (Basel) ; 9(7)2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32674377

RESUMEN

In proteins, methionine (Met) can be oxidized into Met sulfoxide (MetO). The ubiquitous methionine sulfoxide reductases (Msr) A and B are thiol-oxidoreductases reducing MetO. Reversible Met oxidation has a wide range of consequences, from protection against oxidative stress to fine-tuned regulation of protein functions. Bacteria distinguish themselves by the production of molybdenum-containing enzymes reducing MetO, such as the periplasmic MsrP which protects proteins during acute oxidative stress. The versatile dimethyl sulfoxide (DMSO) reductases were shown to reduce the free amino acid MetO, but their ability to reduce MetO within proteins was never evaluated. Here, using model oxidized proteins and peptides, enzymatic and mass spectrometry approaches, we showed that the Rhodobacter sphaeroides periplasmic DorA-type DMSO reductase reduces protein bound MetO as efficiently as the free amino acid L-MetO and with catalytic values in the range of those described for the canonical Msrs. The identification of this fourth type of enzyme able to reduce MetO in proteins, conserved across proteobacteria and actinobacteria, suggests that organisms employ enzymatic systems yet undiscovered to regulate protein oxidation states.

12.
J Bacteriol ; 191(10): 3220-5, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19286807

RESUMEN

Lactococcus lactis, a gram-positive bacterium widely used by the dairy industry to manufacture cheeses, is subject to infection by a diverse population of virulent phages. We have previously determined the structures of three receptor binding proteins (RBPs) from lactococcal phages TP901-1, p2, and bIL170, each of them having a distinct host range. Virulent phages p2 and bIL170 are classified within the 936 group, while the temperate phage TP901-1 is a member of the genetically distinct P335 polythetic group. These RBPs comprise three domains: the N-terminal domain, binding to the virion particle; a beta-helical linker domain; and the C-terminal domain, bearing the receptor binding site used for host recognition. Here, we have designed, expressed, and determined the structure of an RBP chimera in which the N-terminal and linker RBP domains of phage TP901-1 (P335) are fused to the C-terminal RBP domain of phage p2 (936). This chimera exhibits a stable structure that closely resembles the parental structures, while a slight displacement of the linker made RBP domain adaptation efficient. The receptor binding site is structurally indistinguishable from that of native p2 RBP and binds glycerol with excellent affinity.


Asunto(s)
Bacteriófagos/metabolismo , Cristalografía por Rayos X/métodos , Lactococcus lactis/virología , Proteínas Recombinantes de Fusión/química , Proteínas Virales/química , Sitios de Unión , Péptido Hidrolasas/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
J Bacteriol ; 191(3): 728-34, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19047351

RESUMEN

We report here the characterization of the nonstructural protein ORF12 of the virulent lactococcal phage p2, which belongs to the Siphoviridae family. ORF12 was produced as a soluble protein, which forms large oligomers (6- to 15-mers) in solution. Using anti-ORF12 antibodies, we have confirmed that ORF12 is not found in the virion structure but is detected in the second half of the lytic cycle, indicating that it is a late-expressed protein. The structure of ORF12, solved by single anomalous diffraction and refined at 2.9-A resolution, revealed a previously unknown fold as well as the presence of a hydrophobic patch at its surface. Furthermore, crystal packing of ORF12 formed long spirals in which a hydrophobic, continuous crevice was identified. This crevice exhibited a repeated motif of aromatic residues, which coincided with the same repeated motif usually found in tape measure protein (TMP), predicted to form helices. A model of a complex between ORF12 and a repeated motif of the TMP of phage p2 (ORF14) was generated, in which the TMP helix fitted exquisitely in the crevice and the aromatic patches of ORF12. We suggest, therefore, that ORF12 might act as a chaperone for TMP hydrophobic repeats, maintaining TMP in solution during the tail assembly of the lactococcal siphophage p2.


Asunto(s)
Bacteriófago P2/metabolismo , Lactococcus lactis/virología , Proteínas Virales/metabolismo , Bacteriófago P2/genética , Clonación Molecular , Cristalografía por Rayos X , Modelos Moleculares , Estructura Secundaria de Proteína , Proteínas Virales/química , Proteínas Virales/genética
14.
Anal Biochem ; 388(1): 115-21, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19233118

RESUMEN

We report here a general strategy to overproduce and characterize membrane transporters. To illustrate our approach, we selected one member of the CorA transporter family among four tested that belonged to different species. This approach is transposable to other membrane proteins and involves the following steps: (i) cloning by homologous recombination, (ii) high-throughput expression screening, (iii) fermenter-based large-scale production, (iv) high-throughput detergent solubilization screening, (v) protein purification, (vi) multiangle static light scattering/refractometry characterization of purified proteins, (vii) circular dichroism spectroscopy, and (viii) detergent concentration measurements by Fourier transform infrared (FT-IR) spectroscopy. Methanosarcina mazei CorA was expressed in milligram quantities and purified (> 95% pure). n-Dodecyl-beta-D-maltopyranoside (DDM) retained the pentameric native structure of this transporter; thus, we selected it as working detergent. Furthermore, we measured the detergent concentration in our purified and concentrated protein sample by FT-IR to maintain it as low as possible. Our strategy can be adapted to many structural biology approaches as well as for study of single membrane proteins in a variety of conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Methanosarcina/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Dicroismo Circular , Detergentes/química , Maltosa/análogos & derivados , Maltosa/química , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
15.
Front Pharmacol ; 7: 281, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27630564

RESUMEN

While many studies have been devoted to investigating the homeostatic plasticity triggered by cochlear hearing loss, the cellular and molecular mechanisms involved in these central changes remain elusive. In the present study, we investigated the possibility of reactive neurogenesis after unilateral cochlear nerve section in the cochlear nucleus (CN) of cats. We found a strong cell proliferation in all the CN sub-divisions ipsilateral to the lesion. Most of the newly generated cells survive up to 1 month after cochlear deafferentation in all cochlear nuclei (except the dorsal CN) and give rise to a variety of cell types, i.e., microglial cells, astrocytes, and neurons. Interestingly, many of the newborn neurons had an inhibitory (GABAergic) phenotype. This result is intriguing since sensory deafferentation is usually accompanied by enhanced excitation, consistent with a reduction in central inhibition. The membrane potential effect of GABA depends, however, on the intra-cellular chloride concentration, which is maintained at low levels in adults by the potassium chloride co-transporter KCC2. The KCC2 density on the plasma membrane of neurons was then assessed after cochlear deafferentation in the cochlear nuclei ipsilateral and contralateral to the lesion. Cochlear deafferentation is accompanied by a strong down-regulation of KCC2 ipsilateral to the lesion at 3 and 30 days post-lesion. This study suggests that reactive neurogenesis and down-regulation of KCC2 is part of the vast repertoire involved in homeostatic plasticity triggered by hearing loss. These central changes may also play a role in the generation of tinnitus and hyperacusis.

16.
DNA Repair (Amst) ; 3(6): 639-47, 2004 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-15135731

RESUMEN

The crystal structure of the Escherichia coli Vsr endonuclease bound to a C(T/G)AGG substrate revealed that the DNA is held by a pincer composed of a trio of aromatic residues which intercalate into the major groove, and an N-terminus alpha helix which lies across the minor groove. We have constructed an N-terminus truncation (Delta14) which removes most of the alpha helix. The mutant is still fairly proficient in mediating very short patch repair. However, its endonuclease activity is considerably reduced and, in contrast to that of the wild type protein, cannot be stimulated by MutL. We had shown previously that excess Vsr in vivo causes mutagenesis, probably by inhibiting the participation of MutL in mismatch repair. The Delta14 mutant has diminished mutagenicity. In contrast, four enzymatically inactive mutants, with intact N-termini, are as mutagenic as the wild type protein. On the basis of these results we suggest that MutL causes a conformational change in the N-terminus of Vsr which enhances Vsr activity, and that this functional interaction between Vsr and MutL decreases the ability of MutL to carry out mismatch repair.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/aislamiento & purificación , Reparación del ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/aislamiento & purificación , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas MutL , Mutagénesis , Unión Proteica , Conformación Proteica , Eliminación de Secuencia
17.
Nat Commun ; 6: 6148, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25649206

RESUMEN

Formate dehydrogenases (FDHs) are of interest as they are natural catalysts that sequester atmospheric CO2, generating reduced carbon compounds with possible uses as fuel. FDHs activity in Escherichia coli strictly requires the sulphurtransferase EcFdhD, which likely transfers sulphur from IscS to the molybdenum cofactor (Mo-bisPGD) of FDHs. Here we show that EcFdhD binds Mo-bisPGD in vivo and has submicromolar affinity for GDP-used as a surrogate of the molybdenum cofactor's nucleotide moieties. The crystal structure of EcFdhD in complex with GDP shows two symmetrical binding sites located on the same face of the dimer. These binding sites are connected via a tunnel-like cavity to the opposite face of the dimer where two dynamic loops, each harbouring two functionally important cysteine residues, are present. On the basis of structure-guided mutagenesis, we propose a model for the sulphuration mechanism of Mo-bisPGD where the sulphur atom shuttles across the chaperone dimer.


Asunto(s)
Coenzimas/química , Escherichia coli/metabolismo , Formiato Deshidrogenasas/química , Guanosina Difosfato/química , Hidrogenasas/química , Chaperonas Moleculares/química , Molibdeno/química , Complejos Multienzimáticos/química , Sitios de Unión , Biocatálisis , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Liasas de Carbono-Azufre/metabolismo , Clonación Molecular , Coenzimas/metabolismo , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/genética , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Formiatos/química , Formiatos/metabolismo , Expresión Génica , Guanosina Difosfato/metabolismo , Hidrogenasas/genética , Hidrogenasas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Molibdeno/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Oxidación-Reducción , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Azufre/química , Azufre/metabolismo
18.
Front Microbiol ; 5: 117, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24723915

RESUMEN

Magnetotactic bacteria (MTB) can swim along Earth's magnetic field lines, thanks to the alignment of dedicated cytoplasmic organelles. These organelles, termed magnetosomes, are proteolipidic vesicles filled by a 35-120 nm crystal of either magnetite or greigite. The formation and alignment of magnetosomes are mediated by a group of specific genes, the mam genes, encoding the magnetosome-associated proteins. The whole process of magnetosome biogenesis can be divided into four sequential steps; (i) cytoplasmic membrane invagination, (ii) magnetosomes alignment, (iii) iron crystal nucleation and (iv) species-dependent mineral size and shape control. Since both magnetite and greigite are a mix of iron (III) and iron (II), iron redox state management within the magnetosome vesicle is a key issue. Recently, studies have started pointing out the importance of a MTB-specific c-type cytochrome domain found in several magnetosome-associated proteins (MamE, P, T, and X). This magnetochrome (MCR) domain is almost always found in tandem, and this tandem is either found alone (MamT), in combination with a PDZ domain (MamP), a domain of unknown function (MamX) or with a trypsin combined to one or two PDZ domains (MamE). By taking advantage of new genomic data available on MTB and a recent structural study of MamP, which helped define the MCR domain boundaries, we attempt to retrace the evolutionary history within and between the different MCR-containing proteins. We propose that the observed tandem repeat of MCR is the result of a convergent evolution and attempt to explain why this domain is rarely found alone.

19.
Nat Struct Mol Biol ; 20(8): 1008-14, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23851461

RESUMEN

The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBP's concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Modelos Moleculares , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Factores Asociados con la Proteína de Unión a TATA/química , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIID/química , Transcripción Genética/fisiología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Cristalización , Unión Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIIIB/química , Factor de Transcripción TFIIIB/metabolismo
20.
PLoS One ; 6(6): e19521, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21738568

RESUMEN

BACKGROUND: Steroidogenic acute regulatory (StAR) protein related lipid transfer (START) domains are small globular modules that form a cavity where lipids and lipid hormones bind. These domains can transport ligands to facilitate lipid exchange between biological membranes, and they have been postulated to modulate the activity of other domains of the protein in response to ligand binding. More than a dozen human genes encode START domains, and several of them are implicated in a disease. PRINCIPAL FINDINGS: We report crystal structures of the human STARD1, STARD5, STARD13 and STARD14 lipid transfer domains. These represent four of the six functional classes of START domains. SIGNIFICANCE: Sequence alignments based on these and previously reported crystal structures define the structural determinants of human START domains, both those related to structural framework and those involved in ligand specificity. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.


Asunto(s)
Proteínas Portadoras/química , Cristalografía por Rayos X/métodos , Palmitoil-CoA Hidrolasa/química , Fosfoproteínas/química , Proteínas Supresoras de Tumor/química , Proteínas Adaptadoras del Transporte Vesicular , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Activadoras de GTPasa , Humanos , Palmitoil-CoA Hidrolasa/genética , Palmitoil-CoA Hidrolasa/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA