Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nano Lett ; 21(22): 9805-9815, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34516144

RESUMEN

The blood-brain barrier (BBB) is highly selective and acts as the interface between the central nervous system and circulation. While the BBB is critical for maintaining brain homeostasis, it represents a formidable challenge for drug delivery. Here we synthesized gold nanoparticles (AuNPs) for targeting the tight junction specifically and demonstrated that transcranial picosecond laser stimulation of these AuNPs post intravenous injection increases the BBB permeability. The BBB permeability change can be graded by laser intensity, is entirely reversible, and involves increased paracellular diffusion. BBB modulation does not lead to significant disruption in the spontaneous vasomotion or the structure of the neurovascular unit. This strategy allows the entry of immunoglobulins and viral gene therapy vectors, as well as cargo-laden liposomes. We anticipate this nanotechnology to be useful for tissue regions that are accessible to light or fiberoptic application and to open new avenues for drug screening and therapeutic interventions in the central nervous system.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Transporte Biológico , Barrera Hematoencefálica , Oro/química , Rayos Láser
2.
Langmuir ; 35(33): 10977-10986, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31310715

RESUMEN

The purpose of this study is to introduce a new concept of chemically cross-linked microbubble clusters (CCMCs), which are individual microbubble ultrasound contrast agents (UCAs) physically tethered together. We demonstrate a facile means of their production, characterize their size and stability, and describe how they can potentially be used in biomedical applications. By tethering UCAs together into CCMCs, we propose that novel methods of ultrasound mediated imaging and therapy can be developed through unique interbubble interactions in an ultrasound field. One of the major challenges in generating CCMCs is controlling aggregate sizes and maintaining stability against Ostwald ripening and coalescence. In this study, we demonstrate that chemically cross-linked microbubble clusters can produce small (<10 µm) quasi-stable complexes that slowly fuse into bubbles with individual gas cores. Furthermore, we demonstrate that this process can be driven with low-intensity ultrasound pulses, enabling a rapid fusion of clusters which could potentially be used to develop novel ultrasound contrast imaging and drug delivery strategies in future studies. The development of novel microbubble clusters presents a simple yet robust process for generating novel UCAs with a design that could allow for more versatility in contrast-enhanced ultrasound (CEUS), molecular imaging, and drug delivery applications. Additionally, microbubble clustering is a unique way to control size, shell, and gas compositions that can be used to study bubble ripening and coalescence in a highly controlled environment or study the behavior of mixed-microbubble populations.

3.
J Ultrasound Med ; 38(10): 2589-2599, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30706511

RESUMEN

OBJECTIVES: To evaluate the use of super-resolution ultrasound (SR-US) imaging for quantifying microvascular changes in skeletal muscle using a mouse model of type 2 diabetes. METHODS: Study groups were young, standard chow-fed male C57BL/6J mice (lean group) and high fat diet-fed older mice (obese group). After an overnight fast, dynamic contrast-enhanced US imaging was performed on the proximal hind limb adductor muscle group for 10 minutes at baseline and again at 1 and 2 hours during administration of a hyperinsulinemic-euglycemic clamp. Dynamic contrast-enhanced US images were collected on a clinical US scanner (Acuson Sequoia 512; Siemens Healthcare, Mountain View, CA) equipped with a 15L8 linear array transducer. Dynamic contrast-enhanced US images were processed with a spatiotemporal filter to remove tissue clutter. Individual microbubbles were localized and counted to create an SR-US image. A frame-by-frame analysis of the microbubble count was generated (ie, time-microbubble count curve [TMC]) to estimate tissue perfusion and microvascular blood flow. The conventional time-intensity curve (TIC) was also generated for comparison. RESULTS: In vivo SR-US imaging could delineate microvascular structures in the mouse hind limb. Compared with lean animals, insulin-induced microvascular recruitment was attenuated in the obese group. The SR-US-based TMC analysis revealed differences between lean and obese animal data for select microvascular parameters (P < .04), which was not true for TIC-based measurements. Whereas the TMC and TIC microvascular parameters yielded similar temporal trends, there was less variance associated with the TMC-derived values. CONCLUSIONS: Super-resolution US imaging is a new modality for measuring the microvascular properties of skeletal muscle and dysfunction from type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Microvasos/diagnóstico por imagen , Microvasos/fisiopatología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/diagnóstico por imagen , Ultrasonografía/métodos , Animales , Medios de Contraste , Modelos Animales de Enfermedad , Aumento de la Imagen/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/fisiopatología
4.
J Acoust Soc Am ; 145(6): 3457, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31255129

RESUMEN

A phase-change contrast agent (PCCA) can be activated from a liquid (nanodroplet) state using pulsed ultrasound (US) energy to form a larger highly echogenic microbubble (MB). PCCA activation is dependent on the ambient pressure of the surrounding media, so any increase in hydrostatic pressure demands higher US energies to phase transition. In this paper, the authors explore this basic relationship as a potential direction for noninvasive pressure measurement and foundation of a unique technology the authors are developing termed tumor interstitial pressure estimation using ultrasound (TIPE-US). TIPE-US was developed using a programmable US research scanner. A custom scan sequence interleaved pulsed US transmissions for both PCCA activation and detection. An automated US pressure sweep was applied, and US images were acquired at each increment. Various hydrostatic pressures were applied to PCCA samples. Pressurized samples were imaged using the TIPE-US system. The activation threshold required to convert PCCA from the liquid to gaseous state was recorded for various US and PCCA conditions. Given the relationship between the hydrostatic pressure applied to the PCCA and US energy needed for activation, phase transition can be used as a surrogate of hydrostatic pressure. Consistent with theoretical predictions, the PCCA activation threshold was lowered with increasing sample temperature and by decreasing the frequency of US exposure, but it was not impacted by PCCA concentration.


Asunto(s)
Medios de Contraste , Presión Hidrostática , Microburbujas , Ondas Ultrasónicas , Fluorocarburos , Transición de Fase , Valores Limites del Umbral , Volatilización
5.
Langmuir ; 30(21): 6209-18, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24824162

RESUMEN

The goal of this study was to explore the thermodynamic conditions necessary to condense aqueous suspensions of lipid-coated gas-filled microbubbles into metastable liquid-filled nanodrops as well as the physicochemical mechanisms involved with this process. Individual perfluorobutane microbubbles and their lipid shells were observed as they were pressurized at 34.5 kPa s(-1) in a microscopic viewing chamber maintained at temperatures ranging from 5 to 75 °C. The microbubbles contracted under pressure, ultimately leading to either full dissolution or microbubble-to-nanodrop condensation. Temperature-pressure phase diagrams conveying condensation and stability transitions were constructed for microbubbles coated with saturated diacylphosphatidylcholine lipids of varying acyl chain length (C16 to C24). The onset of full dissolution was shifted to higher temperatures with the use of longer acyl chain lipids or supersaturated media. Longer chain lipid shells resisted both dissolution of the gas core and mechanical compression through a pronounced wrinkle-to-fold collapse transition. Interestingly, the lipid shell also provided a mechanical resistance to condensation, shifting the vapor-to-liquid transition to higher pressures than for bulk perfluorobutane. This result indicated that the lipid shell can provide a negative apparent surface tension under compression. Overall, the results of this study will aid in the design and formulation of vaporizable fluorocarbon nanodrops for various applications, such as diagnostic ultrasound imaging, targeted drug delivery, and thermal ablation.


Asunto(s)
Fluorocarburos/química , Lípidos/química , Medios de Contraste/química , Sistemas de Liberación de Medicamentos , Diseño de Equipo , Gases , Microburbujas , Nanotecnología/métodos , Fosfatidilcolinas/química , Polietilenglicoles/química , Presión , Propiedades de Superficie , Temperatura
6.
Artículo en Inglés | MEDLINE | ID: mdl-38708144

RESUMEN

Neuroblastoma is the most common type of extracranial solid tumor in children and can often result in death if not treated. High-intensity focused ultrasound (HIFU) is a non-invasive technique for treating tissue that is deep within the body. It avoids the use of ionizing radiation, avoiding long-term side-effects of these treatments. The goal of this project was to develop the rendering component of an augmented reality (AR) system with potential applications for image-guided HIFU treatment of neuroblastoma. Our project focuses on taking 3D models of neuroblastoma lesions obtained from PET/CT and displaying them in our AR system in near real-time for use by physicians. We used volume ray casting with raster graphics as our preferred rendering method, as it allows for the real-time editing of our 3D radiologic data. Some unique features of our AR system include intuitive hand gestures and virtual user interfaces that allow the user to interact with the rendered data and process PET/CT images for optimal visualization. We implemented the feature to set a custom transfer function, set custom intensity cutoff points, and region-of-interest extraction via cutting planes. In the future, we hope to incorporate this work as part of a complete system for focused ultrasound treatment by adding ultrasound simulation, visualization, and deformable registration.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38707197

RESUMEN

Prostate cancer ranks among the most prevalent types of cancer in males, prompting a demand for early detection and noninvasive diagnostic techniques. This paper explores the potential of ultrasound radiofrequency (RF) data to study different anatomic zones of the prostate. The study leverages RF data's capacity to capture nuanced acoustic information from clinical transducers. The research focuses on the peripheral zone due to its high susceptibility to cancer. The feasibility of utilizing RF data for classification is evaluated using ex-vivo whole prostate specimens from human patients. Ultrasound data, acquired using a phased array transducer, is processed, and correlated with B-mode images. A range filter is applied to highlight the peripheral zone's distinct features, observed in both RF data and 3D plots. Radiomic features were extracted from RF data to enhance tissue characterization and segmentation. The study demonstrated RF data's ability to differentiate tissue structures and emphasizes its potential for prostate tissue classification, addressing the current limitations of ultrasound imaging for prostate management. These findings advocate for the integration of RF data into ultrasound diagnostics, potentially transforming prostate cancer diagnosis and management in the future.

8.
ACS Sens ; 9(6): 2826-2835, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38787788

RESUMEN

Oxygen levels in tissues and organs are crucial for their normal functioning, and approaches to monitor them non-invasively have wide biological and clinical applications. In this study, we developed a method of acoustically detecting oxygenation using contrast-enhanced ultrasound (CEUS) imaging. Our approach involved the use of specially designed hemoglobin-based microbubbles (HbMBs) that reversibly bind to oxygen and alter the state-dependent acoustic response. We confirmed that the bioactivity of hemoglobin remained intact after the microbubble shell was formed, and we did not observe any significant loss of heme. We conducted passive cavitation detection (PCD) experiments to confirm whether the acoustic properties of HbMBs vary based on the level of oxygen present. The experiments involved driving the HbMBs with a 1.1 MHz focused ultrasound transducer. Through the PCD data collected, we observed significant differences in the subharmonic and harmonic responses of the HbMBs when exposed to an oxygen-rich environment versus an oxygen-depleted one. We used a programmable ultrasound system to capture high-frame rate B mode videos of HbMBs in both oxy and deoxy conditions at the same time in a two-chambered flow phantom and observed that the mean pixel intensity of deoxygenated HbMB was greater than in the oxygenated state using B-mode imaging. Finally, we demonstrated that HbMBs can circulate in vivo and are detectable by a clinical ultrasound scanner. To summarize, our results indicate that CEUS imaging with HbMB has the potential to detect changes in tissue oxygenation and could be a valuable tool for clinical purposes in monitoring regional blood oxygen levels.


Asunto(s)
Hemoglobinas , Microburbujas , Oxígeno , Ultrasonografía , Oxígeno/química , Oxígeno/sangre , Hemoglobinas/química , Ultrasonografía/métodos , Animales , Medios de Contraste/química , Acústica , Ratones , Fantasmas de Imagen , Humanos
9.
Mol Imaging ; 12(6): 357-63, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23981781

RESUMEN

In designing targeted contrast agent materials for imaging, the need to present a targeting ligand for recognition and binding by the target is counterbalanced by the need to minimize interactions with plasma components and to avoid recognition by the immune system. We have previously reported on a microbubble imaging probe for ultrasound molecular imaging that uses a buried-ligand surface architecture to minimize unwanted interactions and immunogenicity. Here we examine for the first time the utility of this approach for in vivo molecular imaging. In accordance with previous results, we showed a threefold increase in circulation persistence through the tumor of a fibrosarcoma model in comparison with controls. The buried-ligand microbubbles were then activated for targeted adhesion through the application of noninvasive ultrasound radiation forces applied specifically to the tumor region. Using a clinical ultrasound scanner, microbubbles were activated, imaged, and silenced. The results showed visually conspicuous images of tumor neovasculature and a twofold increase in ultrasound radiation force enhancement of acoustic contrast intensity for buried-ligand microbubbles, whereas no such increase was found for exposed-ligand microbubbles. We therefore conclude that the use of acoustically active buried-ligand microbubbles for ultrasound molecular imaging bridges the demand for low immunogenicity with the necessity of maintaining targeting efficacy and imaging conspicuity in vivo.


Asunto(s)
Medios de Contraste/química , Fibrosarcoma/diagnóstico por imagen , Fibrosarcoma/patología , Microburbujas , Imagen Molecular/métodos , Ultrasonografía/métodos , Animales , Medios de Contraste/efectos de la radiación , Fibrosarcoma/metabolismo , Sondas Moleculares/química , Oligopéptidos/química , Ratas
10.
Pharmaceutics ; 15(6)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37376152

RESUMEN

Despite recent advancements in ultrasound-mediated drug delivery and the remarkable success observed in pre-clinical studies, no delivery platform utilizing ultrasound contrast agents has yet received FDA approval. The sonoporation effect was a game-changing discovery with a promising future in clinical settings. Various clinical trials are underway to assess sonoporation's efficacy in treating solid tumors; however, there are disagreements on its applicability to the broader population due to long-term safety issues. In this review, we first discuss how acoustic targeting of drugs gained importance in cancer pharmaceutics. Then, we discuss ultrasound-targeting strategies that have been less explored yet hold a promising future. We aim to shed light on recent innovations in ultrasound-based drug delivery including newer designs of ultrasound-sensitive particles specifically tailored for pharmaceutical usage.

11.
Sci Rep ; 13(1): 14942, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696978

RESUMEN

In this work, we discuss the development of H.O.S.T., a novel hemoglobin microbubble-based electrochemical biosensor for label-free detection of Hydrogen peroxide (H2O2) towards oxidative stress and cancer diagnostic applications. The novelty of the constructed sensor lies in the use of a sonochemically prepared hemoglobin microbubble capture probe, which allowed for an extended dynamic range, lower detection limit, and enhanced resolution compared to the native hemoglobin based H2O2 biosensors. The size of the prepared particles Hemoglobin microbubbles was characterized using Coulter Counter analysis and was found to be 4.4 microns, and the morphology of these spherical microbubbles was shown using Brightfield microscopy. The binding chemistry of the sensor stack elements of HbMbs' and P.A.N.H.S. crosslinker was characterized using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy and UV-Vis Spectroscopy. The electrochemical biosensor calibration (R2 > 0.95) was done using Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Square Wave Voltammetry. The electrochemical biosensor calibration (R2 > 0.95) was done using Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Square Wave Voltammetry. The specificity of the sensor for H2O2 was analyzed using cross-reactivity studies using ascorbic acid and glucose as interferents (p < 0.0001 for the highest non-specific dose versus the lowest specific dose). The developed sensor showed good agreement in performance with a commercially available kit for H2O2 detection using Bland Altman Analysis (mean bias = 0.37 for E.I.S. and - 24.26 for CV). The diagnostic potential of the biosensor was further tested in cancerous (N.G.P.) and non-cancerous (H.E.K.) cell lysate for H2O2 detection (p = 0.0064 for E.I.S. and p = 0.0062 for CV). The Michaelis Menten constant calculated from the linear portion of the sensor was found to be [Formula: see text] of 19.44 µM indicating that our biosensor has a higher affinity to Hydrogen peroxide than other available enzymatic sensors, it is attributed to the unique design of the hemoglobin polymers in microbubble.


Asunto(s)
Peróxido de Hidrógeno , Microburbujas , Hemoglobinas , Estrés Oxidativo , Tecnología
12.
Pharmaceutics ; 15(11)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38004529

RESUMEN

The use of drug-loaded microbubbles for targeted drug delivery, particularly in cancer treatment, has been extensively studied in recent years. However, the loading capacity of microbubbles has been limited due to their surface area. Typically, drug molecules are loaded on or within the shell, or drug-loaded nanoparticles are coated on the surfaces of microbubbles. To address this significant limitation, we have introduced a novel approach. For the first time, we employed a transmembrane ammonium sulfate and pH gradient to load doxorubicin in a crystallized form in the core of polymeric microcapsules. Subsequently, we created remotely loaded microbubbles (RLMBs) through the sublimation of the liquid core of the microcapsules. Remotely loaded microcapsules exhibited an 18-fold increase in drug payload compared with physically loaded microcapsules. Furthermore, we investigated the drug release of RLMBs when exposed to an ultrasound field. After 120 s, an impressive 82.4 ± 5.5% of the loaded doxorubicin was released, demonstrating the remarkable capability of remotely loaded microbubbles for on-demand drug release. This study is the first to report such microbubbles that enable rapid drug release from the core. This innovative technique holds great promise in enhancing drug loading capacity and advancing targeted drug delivery.

13.
Pharmaceutics ; 15(9)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37765176

RESUMEN

Welcome to this special issue on Cavitation-Enhanced Drug Delivery and Immunotherapy-a rapidly evolving area that has been buoyed in recent years by the development of methods harnessing the activity of ultrasound-stimulated bubbles known as cavitation [...].

14.
Artículo en Inglés | MEDLINE | ID: mdl-38495411

RESUMEN

Ultrasound contrast agents (UCA) are gas-encapsulated microspheres that oscillate volumetrically when exposed to an ultrasound field producing backscattered signals efficiently, which can be used for improved ultrasound imaging and drug delivery applications. We developed a novel oxygen-sensitive hemoglobin-shell microbubble designed to acoustically detect blood oxygen levels. We hypothesize that structural change in hemoglobin caused due to varying oxygen levels in the body can lead to mechanical changes in the shell of the UCA. This can produce detectable changes in the acoustic response that can be used for measuring oxygen levels in the body. In this study, we have shown that oxygenated hemoglobin microbubbles can be differentiated from deoxygenated hemoglobin microbubbles using a 1D convolutional neural network using radiofrequency (RF) data. We were able to classify RF data from oxygenated and deoxygenated hemoglobin microbubbles into the two classes with a testing accuracy of 90.15%. The results suggest that oxygen content in hemoglobin affects the acoustical response and may be used for determining oxygen levels and thus could open many applications, including evaluating hypoxic regions in tumors and the brain, among other blood-oxygen-level-dependent imaging applications.

15.
Theranostics ; 13(10): 3402-3418, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351172

RESUMEN

Neuroblastoma (NB) is a pediatric malignancy that accounts for 15% of cancer-related childhood mortality. High-risk NB requires an aggressive chemoradiotherapy regimen that causes significant off-target toxicity. Despite this invasive treatment, many patients either relapse or do not respond adequately. Recent studies suggest that improving tumor perfusion can enhance drug accumulation and distribution within the tumor tissue, potentially augmenting treatment effects without inflicting systemic toxicity. Accordingly, methods that transiently increase tumor perfusion prior to treatment may help combat this disease. Here, we show the use of gene therapy to confer inducible nitric oxide synthase (iNOS) expression solely in the tumor space, using focused ultrasound targeting. NOS catalyzes the reaction that generates nitric oxide (NO), a potent endogenous vasodilator. This study reports the development of a targeted non-viral image-guided platform to deliver iNOS-expressing plasmid DNA (pDNA) to vascular endothelial cells encasing tumor blood vessels. Following transfection, longitudinal quantitative contrast-enhanced ultrasound (qCEUS) imaging revealed an increase in tumor perfusion over 72 h, attributed to elevated intratumoral iNOS expression. Methods: To construct a gene delivery vector, cationic ultrasound-responsive agents (known as "microbubbles") were employed to carry pDNA in circulation and transfect tumor vascular endothelial cells in vivo using focused ultrasound (FUS) energy. This was followed by liposomal doxorubicin (L-DOX) treatment. The post-transfection tumor response was monitored longitudinally using qCEUS imaging to determine relative changes in blood volumes and perfusion rates. After therapy, ex vivo analysis of tumors was performed to examine the bioeffects associated with iNOS expression. Results: By combining FUS therapy with cationic ultrasound contrast agents (UCAs), we achieved selective intratumoral transfection of pDNA encoding the iNOS enzyme. While transitory, the degree of expression was sufficient to induce significant increases in tumoral perfusion, to appreciably enhance the chemotherapeutic payload and to extend survival time in an orthotopic xenograft model. Conclusion: We have demonstrated the ability of a novel targeted non-viral gene therapy strategy to enhance tumor perfusion and improve L-DOX delivery to NB xenografts. While our results demonstrate that transiently increasing tumor perfusion improves liposome-encapsulated chemotherapeutic uptake and distribution, we expect that our iNOS gene delivery paradigm can also significantly improve radio and immunotherapies by increasing the delivery of radiosensitizers and immunomodulators, potentially improving upon current NB treatment without concomitant adverse effects. Our findings further suggest that qCEUS imaging can effectively monitor changes in tumor perfusion in vivo, allowing the identification of an ideal time-point to administer therapy.


Asunto(s)
Neuroblastoma , Óxido Nítrico , Niño , Humanos , Óxido Nítrico/metabolismo , Células Endoteliales/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , ADN , Terapia Genética , Perfusión
16.
Nat Commun ; 14(1): 4989, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591837

RESUMEN

The estrogen receptor (ER) designated ERα has actions in many cell and tissue types that impact glucose homeostasis. It is unknown if these include mechanisms in endothelial cells, which have the potential to influence relative obesity, and processes in adipose tissue and skeletal muscle that impact glucose control. Here we show that independent of impact on events in adipose tissue, endothelial ERα promotes glucose tolerance by enhancing endothelial insulin transport to skeletal muscle. Endothelial ERα-deficient male mice are glucose intolerant and insulin resistant, and in females the antidiabetogenic actions of estradiol (E2) are absent. The glucose dysregulation is due to impaired skeletal muscle glucose disposal that results from attenuated muscle insulin delivery. Endothelial ERα activation stimulates insulin transcytosis by skeletal muscle microvascular endothelial cells. Mechanistically this involves nuclear ERα-dependent upregulation of vesicular trafficking regulator sorting nexin 5 (SNX5) expression, and PI3 kinase activation that drives plasma membrane recruitment of SNX5. Thus, coupled nuclear and non-nuclear actions of ERα promote endothelial insulin transport to skeletal muscle to foster normal glucose homeostasis.


Asunto(s)
Receptor alfa de Estrógeno , Insulina , Animales , Femenino , Masculino , Ratones , Células Endoteliales , Glucosa , Músculo Esquelético , Receptores de Estrógenos
17.
ACS Appl Polym Mater ; 4(2): 773-780, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35187494

RESUMEN

Polymeric microcapsules (MCs) are biocompatible agents used in biomedical applications such as drug delivery and in vivo imaging. We have discovered a method of remotely loading air into polylactic acid (PLA)-based MCs with an aqueous core. When the microcapsules are suspended in high content glycerol and propylene glycol solutions, changes in gas solubility cause bubbles to nucleate within the core through an "Ouzo-like" effect. The resulting bubble displaces the internal fluid of the MCs, but small molecules are retained in their interior. The residual content does not homogeneously distribute; rather, it localizes to one specific location, creating gas-filled Janus particles.

18.
Artículo en Inglés | MEDLINE | ID: mdl-36793945

RESUMEN

Ultrasound contrast agents (UCA) are gas encapsulated microspheres that oscillate volumetrically when exposed to an ultrasound field producing a backscattered signal which can be used for improved ultrasound imaging and drug delivery. UCA's are being used widely for contrast-enhanced ultrasound imaging, but there is a need for improved UCAs to develop faster and more accurate contrast agent detection algorithms. Recently, we introduced a new class of lipid based UCAs called Chemically Cross-linked Microbubble Clusters (CCMCs). CCMCs are formed by the physical tethering of individual lipid microbubbles into a larger aggregate cluster. The advantages of these novel CCMCs are their ability to fuse together when exposed to low intensity pulsed ultrasound (US), potentially generating unique acoustic signatures that can enable better contrast agent detection. In this study, our main objective is to demonstrate that the acoustic response of CCMCs is unique and distinct when compared to individual UCAs using deep learning algorithms. Acoustic characterization of CCMCs and individual bubbles was performed using a broadband hydrophone or a clinical transducer attached to a Verasonics Vantage 256. A simple artificial neural network (ANN) was trained and used to classify raw 1D RF ultrasound data as either from CCMC or non-tethered individual bubble populations of UCAs. The ANN was able to classify CCMCs at an accuracy of 93.8% for data collected from broadband hydrophone and 90% for data collected using Verasonics with a clinical transducer. The results obtained suggest the acoustic response of CCMCs is unique and has the potential to be used in developing a novel contrast agent detection technique.

19.
Artículo en Inglés | MEDLINE | ID: mdl-36794092

RESUMEN

Hyperspectral endoscopy can offer multiple advantages as compared to conventional endoscopy. Our goal is to design and develop a real-time hyperspectral endoscopic imaging system for the diagnosis of gastrointestinal (GI) tract cancers using a micro-LED array as an in-situ illumination source. The wavelengths of the system range from ultraviolet to visible and near infrared. To evaluate the use of the LED array for hyperspectral imaging, we designed a prototype system and conducted ex vivo experiments using normal and cancerous tissues of mice, chicken, and sheep. We compared the results of our LED-based approach with our reference hyperspectral camera system. The results confirm the similarity between the LED-based hyperspectral imaging system and the reference HSI camera. Our LED-based hyperspectral imaging system can be used not only as an endoscope but also as a laparoscopic or handheld devices for cancer detection and surgery.

20.
J Vis Exp ; (169)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33843933

RESUMEN

There are many methods that can be used for the production of vaporizable phase-shift droplets for imaging and therapy. Each method utilizes different techniques and varies in price, materials, and purpose. Many of these fabrication methods result in polydisperse populations with non-uniform activation thresholds. Additionally, controlling the droplet sizes typically requires stable perfluorocarbon liquids with high activation thresholds that are not practical in vivo. Producing uniform droplet sizes using low-boiling point gases would be beneficial for in vivo imaging and therapy experiments. This article describes a simple and economical method for the formation of size-filtered lipid-stabilized phase-shift nanodroplets with low-boiling point decafluorobutane (DFB). A common method of generating lipid microbubbles is described, in addition to a novel method of condensing them with high-pressure extrusion in a single step. This method is designed to save time, maximize efficiency, and generate larger volumes of microbubble and nanodroplet solutions for a wide variety of applications using common laboratory equipment found in many biological laboratories.


Asunto(s)
Fluorocarburos/química , Microburbujas/normas , Nanotecnología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA