RESUMEN
BACKGROUND: SERCA [sarco(endo)plasmic reticulum calcium ATPase] is regulated by oxidative posttranslational modifications at cysteine 674 (C674). Because sarcoplasmic reticulum (SR) calcium has been shown to play a critical role in mediating mitochondrial dysfunction in response to reactive oxygen species, we hypothesized that SERCA oxidation at C674 would modulate the effects of reactive oxygen species on mitochondrial calcium and mitochondria-dependent apoptosis in cardiac myocytes. METHODS: Adult rat ventricular myocytes expressing wild-type SERCA2b or a redox-insensitive mutant in which C674 is replaced by serine (C674S) were exposed to H2O2 (100 µmol/Lµ). Free mitochondrial calcium concentration was measured in adult rat ventricular myocytes with a genetically targeted fluorescent probe, and SR calcium content was assessed by measuring caffeine-stimulated release. Mice with heterozygous knock-in of the SERCA C674S mutation were subjected to chronic ascending aortic constriction. RESULTS: In adult rat ventricular myocytes expressing wild-type SERCA, H2O2 caused a 25% increase in mitochondrial calcium concentration that was associated with a 50% decrease in SR calcium content, both of which were prevented by the ryanodine receptor inhibitor tetracaine. In cells expressing the C674S mutant, basal SR calcium content was decreased by 31% and the H2O2-stimulated rise in mitochondrial calcium concentration was attenuated by 40%. In wild-type cells, H2O2 caused cytochrome c release and apoptosis, both of which were prevented in C674S-expressing cells. In myocytes from SERCA knock-in mice, basal SERCA activity and SR calcium content were decreased. To test the effect of C674 oxidation on apoptosis in vivo, SERCA knock-in mice were subjected to chronic ascending aortic constriction. In wild-type mice, ascending aortic constriction caused myocyte apoptosis, LV dilation, and systolic failure, all of which were inhibited in SERCA knock-in mice. CONCLUSIONS: Redox activation of SERCA C674 regulates basal SR calcium content, thereby mediating the pathologic reactive oxygen species-stimulated rise in mitochondrial calcium required for myocyte apoptosis and myocardial failure.
Asunto(s)
Apoptosis , Calcio/metabolismo , Insuficiencia Cardíaca/enzimología , Mitocondrias Cardíacas/enzimología , Miocitos Cardíacos/enzimología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Apoptosis/efectos de los fármacos , Señalización del Calcio , Células Cultivadas , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Peróxido de Hidrógeno/toxicidad , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Mutación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Oxidantes/toxicidad , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Función Ventricular Izquierda , Remodelación VentricularRESUMEN
Metabolic syndrome is a cluster of obesity-related metabolic abnormalities that lead to metabolic heart disease (MHD) with left ventricular pump dysfunction. Although MHD is thought to be associated with myocardial energetic deficiency, two key questions have not been answered. First, it is not known whether there is a sufficient energy deficit to contribute to pump dysfunction. Second, the basis for the energy deficit is not clear. To address these questions, mice were fed a high fat, high sucrose (HFHS) 'Western' diet to recapitulate the MHD phenotype. In isolated beating hearts, we used 31P NMR spectroscopy with magnetization transfer to determine a) the concentrations of high energy phosphates ([ATP], [ADP], [PCr]), b) the free energy of ATP hydrolysis (∆G~ATP), c) the rate of ATP production and d) flux through the creatine kinase (CK) reaction. At the lowest workload, the diastolic pressure-volume relationship was shifted upward in HFHS hearts, indicative of diastolic dysfunction, whereas systolic function was preserved. At this workload, the rate of ATP synthesis was decreased in HFHS hearts, and was associated with decreases in both [PCr] and ∆G~ATP. Higher work demands unmasked the inability of HFHS hearts to increase systolic function and led to a further decrease in ∆G~ATP to a level that is not sufficient to maintain normal function of sarcoplasmic Ca2+-ATPase (SERCA). While [ATP] was preserved at all work demands in HFHS hearts, the progressive increase in [ADP] led to a decrease in ∆G~ATP with increased work demands. Surprisingly, CK flux, CK activity and total creatine were normal in HFHS hearts. These findings differ from dilated cardiomyopathy, in which the energetic deficiency is associated with decreases in CK flux, CK activity and total creatine. Thus, in HFHS-fed mice with MHD there is a distinct metabolic phenotype of the heart characterized by a decrease in ATP production that leads to a functionally-important energetic deficiency and an elevation of [ADP], with preservation of CK flux.
Asunto(s)
Adenosina Trifosfato/metabolismo , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Contracción Miocárdica , Animales , Peso Corporal , Creatina Quinasa/metabolismo , Diástole , Dieta Alta en Grasa , Sacarosa en la Dieta , Metabolismo Energético , Hidrólisis , Espectroscopía de Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos , PerfusiónRESUMEN
BACKGROUND: In surviving patients, sepsis-induced cardiomyopathy is spontaneously reversible. In the absence of any experimental data, it is generally thought that cardiac recovery in sepsis simply follows the remission of systemic inflammation. Here the authors aimed to identify the myocardial mechanisms underlying cardiac recovery in endotoxemic mice. METHODS: Male C57BL/6 mice were challenged with lipopolysaccharide (7 µg/g, intraperitoneally) and followed for 12 days. The authors assessed survival, cardiac function by echocardiography, sarcomere shortening, and calcium transients (with fura-2-acetoxymethyl ester) in electrically paced cardiomyocytes (5 Hz, 37°C) and myocardial protein expression by immunoblotting. RESULTS: Left ventricular ejection fraction, cardiomyocyte sarcomere shortening, and calcium transients were depressed 12 h after lipopolysaccharide challenge, started to recover by 24 h (day 1), and were back to baseline at day 3. The recovery of calcium transients at day 3 was associated with the up-regulation of the sarcoplasmic reticulum calcium pump to 139 ± 19% (mean ± SD) of baseline and phospholamban down-regulation to 35 ± 20% of baseline. At day 6, calcium transients were increased to 123 ± 31% of baseline, associated with increased sarcoplasmic reticulum calcium load (to 126 ± 32% of baseline, as measured with caffeine) and inhibition of sodium/calcium exchange (to 48 ± 12% of baseline). CONCLUSIONS: In mice surviving lipopolysaccharide challenge, the natural recovery of cardiac contractility was associated with the up-regulation of cardiomyocyte calcium handling above baseline levels, indicating the presence of an active myocardial recovery process, which included sarcoplasmic reticulum calcium pump activation, the down-regulation of phospholamban, and sodium/calcium exchange inhibition.
Asunto(s)
Calcio/metabolismo , Cardiomiopatías/metabolismo , Endotoxemia/metabolismo , Regulación hacia Arriba/fisiología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismoRESUMEN
BACKGROUND: Diet-induced obesity leads to metabolic heart disease (MHD) characterized by increased oxidative stress that may cause oxidative post-translational modifications (OPTM) of cardiac mitochondrial proteins. The functional consequences of OPTM of cardiac mitochondrial proteins in MHD are unknown. Our objective was to determine whether cardiac mitochondrial dysfunction in MHD due to diet-induced obesity is associated with cysteine OPTM. METHODS AND RESULTS: Male C57BL/6J mice were fed either a high-fat, high-sucrose (HFHS) or control diet for 8months. Cardiac mitochondria from HFHS-fed mice (vs. control diet) had an increased rate of H2O2 production, a decreased GSH/GSSG ratio, a decreased rate of complex II substrate-driven ATP synthesis and decreased complex II activity. Complex II substrate-driven ATP synthesis and complex II activity were partially restored ex-vivo by reducing conditions. A biotin switch assay showed that HFHS feeding increased cysteine OPTM in complex II subunits A (SDHA) and B (SDHB). Using iodo-TMT multiplex tags we found that HFHS feeding is associated with reversible oxidation of cysteines 89 and 231 in SDHA, and 100, 103 and 115 in SDHB. CONCLUSIONS: MHD due to consumption of a HFHS "Western" diet causes increased H2O2 production and oxidative stress in cardiac mitochondria associated with decreased ATP synthesis and decreased complex II activity. Impaired complex II activity and ATP production are associated with reversible cysteine OPTM of complex II. Possible sites of reversible cysteine OPTM in SDHA and SDHB were identified by iodo-TMT tag labeling. Mitochondrial ROS may contribute to the pathophysiology of MHD by impairing the function of complex II. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Asunto(s)
Dieta Alta en Grasa/efectos adversos , Complejo II de Transporte de Electrones/metabolismo , Mitocondrias Cardíacas/metabolismo , Procesamiento Proteico-Postraduccional , Adenosina Trifosfato/metabolismo , Animales , Activación Enzimática , Glutatión/metabolismo , Peróxido de Hidrógeno , Masculino , Ratones , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Using a novel cysteine thiol labeling strategy coupled with mass spectrometric analysis, we identified and quantified the changes in global reversible cysteine oxidation of proteins in the left ventricle of hearts from mice with metabolic syndrome-associated diastolic dysfunction. This phenotype was induced by feeding a high-fat, high-sucrose, type-2 diabetogenic diet to C57BL/6J mice for 8 mo. The extent of reversible thiol oxidation in relationship to the total available (free and reducible) level of each cysteine could be confidently determined for 173 proteins, of which 98 contained cysteines differentially modified ≥1.5-fold by the diet. Our findings suggest that the metabolic syndrome leads to potentially deleterious changes in the oxidative modification of metabolically active proteins. These alterations may adversely regulate energy substrate flux through glycolysis, ß-oxidation, citric acid (TCA) cycle, and oxidative phosphorylation (oxphos), thereby contributing to maladaptive tissue remodeling that is associated with, and possibly contributing to, diastolic left ventricular dysfunction.
Asunto(s)
Cisteína/genética , Dieta/efectos adversos , Cardiopatías/etiología , Oxígeno/química , Animales , Cromatografía Liquida , Ciclo del Ácido Cítrico , Cisteína/química , Ácidos Grasos/química , Glucólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica , Miocardio/metabolismo , Obesidad/metabolismo , Fosforilación Oxidativa , Fenotipo , Procesamiento Proteico-Postraduccional , Proteómica , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/química , Espectrometría de Masas en TándemRESUMEN
BACKGROUND: Sepsis-induced cardiomyopathy (SIC) is thought to be the result of detrimental effects of inflammatory mediators on the cardiac muscle. Here we studied the effects of prolonged (24 ± 4 h) exposure of adult rat ventricular myocytes (ARVM) to bacterial lipopolysaccharide (LPS) and inflammatory cytokines tumor necrosis factor (TNF) and interleukins-1 (IL-1) and IL-6. MATERIALS AND METHODS: We measured sarcomere shortening (SS) and cellular calcium (Ca(2+)) transients (ΔCai, with fura-2 AM) in isolated cardiomyocytes externally paced at 5 Hz at 37°C. RESULTS: SS decreased after incubation with LPS (100 µg/mL), IL-1 (100 ng/mL), and IL-6 (30 ng/mL), but not with lesser doses of these mediators, or TNF (10-100 ng/mL). A combination of LPS (100 µg/mL), TNF, IL-1, and IL-6 (each 100 ng/mL; i.e., "Cytomix-100") induced a maximal decrease in SS and ΔCai. Sarcoplasmic reticulum (SR) Ca(2+) load (CaSR, measured with caffeine) was unchanged by Cytomix-100; however, SR fractional release (ΔCai/CaSR) was decreased. Underlying these effects, Ca(2+) influx into the cell (via L-type Ca(2+) channels, LTCC) and Ca(2+) extrusion via Na(+)/Ca(2+) exchange were decreased by Cytomix-100. SR Ca(2+) pump (SERCA) (SR Ca(2+) ATPase) was not affected. CONCLUSIONS: Prolonged exposure of ARVM to a mixture of LPS and inflammatory cytokines inhibits cell contractility. The effect is mediated by the inhibition of Ca(2+) influx via LTCC, and partially opposed by the inhibition of Na(+)/Ca(2+) exchange. Because both mechanisms are commonly seen in animal models of SIC, we conclude that prolonged challenge with Cytomix-100 of ARVM may represent an accurate in vitro model for SIC.
Asunto(s)
Cardiomiopatías/etiología , Citocinas/toxicidad , Lipopolisacáridos/toxicidad , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sepsis/complicaciones , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Células Cultivadas , Masculino , Miocitos Cardíacos/enzimología , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismoRESUMEN
Oxidative stress in the myocardium plays an important role in the pathophysiology of hemodynamic overload. The mechanism by which reactive oxygen species (ROS) in the cardiac myocyte mediate myocardial failure in hemodynamic overload is not known. Accordingly, our goals were to test whether myocyte-specific overexpression of peroxisomal catalase (pCAT) that localizes in the sarcoplasm protects mice from hemodynamic overload-induced failure and prevents oxidation and inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), an important sarcoplasmic protein. Chronic hemodynamic overload was caused by ascending aortic constriction (AAC) for 12 wk in mice with myocyte-specific transgenic expression of pCAT. AAC caused left ventricular hypertrophy and failure associated with a generalized increase in myocardial oxidative stress and specific oxidative modifications of SERCA at cysteine 674 and tyrosine 294/5. pCAT overexpression ameliorated myocardial hypertrophy and apoptosis, decreased pathological remodeling, and prevented the progression to heart failure. Likewise, pCAT prevented oxidative modifications of SERCA and increased SERCA activity without changing SERCA expression. Thus cardiac myocyte-restricted expression of pCAT effectively ameliorated the structural and functional consequences of chronic hemodynamic overload and increased SERCA activity via a post-translational mechanism, most likely by decreasing inhibitory oxidative modifications. In pressure overload-induced heart failure cardiac myocyte cytosolic ROS play a pivotal role in mediating key pathophysiologic events including hypertrophy, apoptosis, and decreased SERCA activity.
Asunto(s)
Apoptosis/fisiología , Citosol/metabolismo , Insuficiencia Cardíaca/metabolismo , Peróxido de Hidrógeno/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Miocitos Cardíacos/patología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Hemodinámica/fisiología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Retículo Sarcoplasmático/metabolismo , Transducción de Señal/fisiologíaRESUMEN
Oxidative stress is pathogenic in a variety of diseases, but the mechanism by which cellular signaling is affected by oxidative species has yet to be fully characterized. Lipid peroxidation, a secondary process that occurs during instances of free radical production, may play an important role in modulating cellular signaling under conditions of oxidative stress. 4-Hydroxy-trans-2-nonenal (HNE) is an electrophilic aldehyde produced during lipid peroxidation that forms covalent adducts on proteins, altering their activity and function. One such target, LKB1, has been reported to be inhibited by HNE adduction. We tested the hypothesis that HNE inhibits LKB1 activity through adduct formation on a specific reactive residue of the protein. To elucidate the mechanism of the inhibitory effect, HEK293T cells expressing LKB1 were treated with HNE (10 µm for 1 h) and assayed for HNE-LKB1 adduct formation and changes in LKB1 kinase activity. HNE treatment resulted in the formation of HNE-LKB1 adducts and decreased LKB1 kinase activity by 31 ± 9% (S.E.) but had no effect on the association of LKB1 with its adaptor proteins sterile-20-related adaptor and mouse protein 25. Mutation of LKB1 lysine residue 97 reduced HNE adduct formation and attenuated the effect of HNE on LKB1 activity. Taken together, our results suggest that adduction of LKB1 Lys-97 mediates the inhibitory effect of HNE.
Asunto(s)
Aldehídos/metabolismo , Lipoilación/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Células HEK293 , Humanos , Lisina/genética , Lisina/metabolismo , Ratones , Mutación , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
BACKGROUND: Diet-induced obesity is associated with metabolic heart disease characterized by left ventricular hypertrophy and diastolic dysfunction. Polyphenols such as resveratrol and the synthetic flavonoid derivative S17834 exert beneficial systemic and cardiovascular effects in a variety of settings including diabetes mellitus and chronic hemodynamic overload. METHODS AND RESULTS: We characterized the structural and functional features of a mouse model of diet-induced metabolic syndrome and used the model to test the hypothesis that the polyphenols prevent myocardial hypertrophy and diastolic dysfunction. Male C57BL/6J mice were fed a normal diet or a diet high in fat and sugar (HFHS) with or without concomitant treatment with S17834 or resveratrol for up to 8 months. HFHS diet-fed mice developed progressive left ventricular hypertrophy and diastolic dysfunction with preservation of systolic function in association with myocyte hypertrophy and interstitial fibrosis. In HFHS diet-fed mice, there was increased myocardial oxidative stress with evidence of oxidant-mediated protein modification via tyrosine nitration and 4-OH-2-nonenol adduction. HFHS diet-fed mice also exhibited increases in plasma fasting glucose, insulin, and homeostasis model assessment of insulin resistance indicative of insulin resistance. Treatment with S17834 or resveratrol prevented left ventricular hypertrophy and diastolic dysfunction. For S17834, these beneficial effects were associated with decreases in oxidant-mediated protein modifications and hyperinsulinemia and increased plasma adiponectin. CONCLUSIONS: Resveratrol and S17834 administered concurrently with a HFHS diet prevent the development of left ventricular hypertrophy, interstitial fibrosis, and diastolic dysfunction. Multiple mechanisms may contribute to the beneficial effects of the polyphenols, including a reduction in myocardial oxidative stress and related protein modifications, amelioration of insulin resistance, and increased plasma adiponectin. The polyphenols resveratrol and S17834 may be of value in the prevention of diet-induced metabolic heart disease.
Asunto(s)
Benzopiranos/uso terapéutico , Diástole/efectos de los fármacos , Dieta Alta en Grasa , Carbohidratos de la Dieta/administración & dosificación , Hipertrofia Ventricular Izquierda/prevención & control , Estilbenos/uso terapéutico , Adiponectina/sangre , Animales , Antihipertensivos/farmacología , Benzopiranos/farmacología , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional , Resveratrol , Función Ventricular Izquierda/efectos de los fármacosRESUMEN
The goal of this study was to identify the cellular mechanisms responsible for cardiac dysfunction in endotoxemic mice. We aimed to differentiate the roles of cGMP [produced by soluble guanylyl cyclase (sGC)] versus oxidative posttranslational modifications of Ca(2+) transporters. C57BL/6 mice [wild-type (WT) mice] were administered lipopolysaccharide (LPS; 25 µg/g ip) and euthanized 12 h later. Cardiomyocyte sarcomere shortening and Ca(2+) transients (ΔCai) were depressed in LPS-challenged mice versus baseline. The time constant of Ca(2+) decay (τCa) was prolonged, and sarcoplasmic reticulum Ca(2+) load (CaSR) was depressed in LPS-challenged mice (vs. baseline), indicating decreased activity of sarco(endo)plasmic Ca(2+)-ATPase (SERCA). L-type Ca(2+) channel current (ICa,L) was also decreased after LPS challenge, whereas Na(+)/Ca(2+) exchange activity, ryanodine receptors leak flux, or myofilament sensitivity for Ca(2+) were unchanged. All Ca(2+)-handling abnormalities induced by LPS (the decrease in sarcomere shortening, ΔCai, CaSR, ICa,L, and τCa prolongation) were more pronounced in mice deficient in the sGC main isoform (sGCα1(-/-) mice) versus WT mice. LPS did not alter the protein expression of SERCA and phospholamban in either genotype. After LPS, phospholamban phosphorylation at Ser(16) and Thr(17) was unchanged in WT mice and was increased in sGCα1(-/-) mice. LPS caused sulphonylation of SERCA Cys(674) (as measured immunohistochemically and supported by iodoacetamide labeling), which was greater in sGCα1(-/-) versus WT mice. Taken together, these results suggest that cardiac Ca(2+) dysregulation in endotoxemic mice is mediated by a decrease in L-type Ca(2+) channel function and oxidative posttranslational modifications of SERCA Cys(674), with the latter (at least) being opposed by sGC-released cGMP.
Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Endotoxemia/metabolismo , Corazón/fisiopatología , Miocitos Cardíacos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , GMP Cíclico/biosíntesis , Cisteína/metabolismo , Guanilato Ciclasa/genética , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sarcómeros , Retículo Sarcoplasmático/metabolismo , Intercambiador de Sodio-Calcio/metabolismoRESUMEN
BACKGROUND: Oxidative stress and mitochondrial dysfunction are central mediators of cardiac dysfunction after ischemia/reperfusion. ATP binding cassette mitochondrial erythroid (ABC-me; ABCB10; mABC2) is a mitochondrial transporter highly induced during erythroid differentiation and predominantly expressed in bone marrow, liver, and heart. Until now, ABC-me function in heart was unknown. Several lines of evidence demonstrate that the yeast ortholog of ABC-me protects against increased oxidative stress. Therefore, ABC-me is a potential modulator of the outcome of ischemia/reperfusion in the heart. METHODS AND RESULTS: Mice harboring 1 functional allele of ABC-me (ABC-me(+/-)) were generated by replacing ABC-me exons 2 and 3 with a neomycin resistance cassette. Cardiac function was assessed with Langendorff perfusion and echocardiography. Under basal conditions, ABC-me(+/-) mice had normal heart structure, hemodynamic function, mitochondrial respiration, and oxidative status. However, after ischemia/reperfusion, the recovery of hemodynamic function was reduced by 50% in ABC-me(+/-) hearts as a result of impairments in both systolic and diastolic function. This reduction was associated with impaired mitochondrial bioenergetic function and with oxidative damage to both mitochondrial lipids and sarcoplasmic reticulum calcium ATPase after reperfusion. Treatment of ABC-me(+/-) hearts with the superoxide dismutase/catalase mimetic EUK-207 prevented oxidative damage to mitochondria and sarcoplasmic reticulum calcium ATPase and restored mitochondrial and cardiac function to wild-type levels after reperfusion. CONCLUSIONS: Inactivation of 1 allele of ABC-me increases the susceptibility to oxidative stress induced by ischemia/reperfusion, leading to increased oxidative damage to mitochondria and sarcoplasmic reticulum calcium ATPase and to impaired functional recovery. Thus, ABC-me is a novel gene that determines the ability to tolerate cardiac ischemia/reperfusion.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Mitocondrias/fisiología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Estrés Oxidativo/genética , Recuperación de la Función/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Volumen Cardíaco/fisiología , Catalasa/metabolismo , Femenino , Predisposición Genética a la Enfermedad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mitocondrias/efectos de los fármacos , Mutagénesis Insercional , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Compuestos Organometálicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Presión Ventricular/fisiologíaRESUMEN
BACKGROUND: Myocyte contractile dysfunction occurs in pathological remodeling in association with abnormalities in calcium regulation. Mice with cardiac myocyte-specific overexpression of Galphaq develop progressive left ventricular failure associated with myocyte contractile dysfunction and calcium dysregulation. OBJECTIVE: We tested the hypothesis that myocyte contractile dysfunction in the Galphaq mouse heart is mediated by reactive oxygen species, and in particular, oxidative posttranslational modifications, which impair the function of sarcoplasmic reticulum Ca2+-ATPase (SERCA). METHODS AND RESULTS: Freshly isolated ventricular myocytes from Galphaq mice had marked abnormalities of myocyte contractile function and calcium transients. In Galphaq myocardium, SERCA protein was not altered in quantity but displayed evidence of oxidative cysteine modifications reflected by decreased biotinylated iodoacetamide labeling and evidence of specific irreversible oxidative modifications consisting of sulfonylation at cysteine 674 and nitration at tyrosines 294/295. Maximal calcium-stimulated SERCA activity was decreased 47% in Galphaq myocardium. Cross-breeding Galphaq mice with transgenic mice that have cardiac myocyte-specific overexpression of catalase (a) decreased SERCA oxidative cysteine modifications, (b) decreased SERCA cysteine 674 sulfonylation and tyrosine 294/295 nitration, (c) restored SERCA activity, and (d) improved myocyte calcium transients and contractile function. CONCLUSIONS: In Galphaq-induced cardiomyopathy, myocyte contractile dysfunction is mediated, at least in part, by 1 or more oxidative posttranslational modifications of SERCA. Protein oxidative posttranslational modifications contribute to the pathophysiology of myocardial dysfunction and thus may provide a target for therapeutic intervention.
Asunto(s)
Señalización del Calcio , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/enzimología , Procesamiento Proteico-Postraduccional , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Disfunción Ventricular Izquierda/enzimología , Animales , Catalasa/metabolismo , Células Cultivadas , Cisteína/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Ratones , Ratones Transgénicos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Regulación hacia Arriba , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/prevención & controlRESUMEN
A major determinant of maximal exercise capacity is the delivery of oxygen to exercising muscles. myo-Inositol trispyrophosphate (ITPP) is a recently identified membrane-permeant molecule that causes allosteric regulation of Hb oxygen binding affinity. In normal mice, i.p. administration of ITPP (0.5-3 g/kg) caused a dose-related increase in the oxygen tension at which Hb is 50% saturated (p50), with a maximal increase of 31%. In parallel experiments, ITPP caused a dose-related increase in maximal exercise capacity, with a maximal increase of 57 +/- 13% (P = 0.002). In transgenic mice with severe heart failure caused by cardiac-specific overexpression of G alpha q, i.p. ITPP increased exercise capacity, with a maximal increase of 63 +/- 7% (P = 0.005). Oral administration of ITPP in drinking water increased Hb p50 and maximal exercise capacity (+34 +/- 10%; P < 0.002) in normal and failing mice. Consistent with increased tissue oxygen availability, ITPP decreased hypoxia inducible factor-1alpha mRNA expression in myocardium. It had no effect on myocardial contractility in isolated mouse cardiac myocytes and did not affect arterial blood pressure in vivo in mice. Thus, ITPP decreases the oxygen binding affinity of Hb, increases tissue oxygen delivery, and increases maximal exercise capacity in normal mice and mice with severe heart failure. ITPP is thus an attractive candidate for the therapy of patients with reduced exercise capacity caused by heart failure.
Asunto(s)
Tolerancia al Ejercicio/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Hemoglobinas/efectos de los fármacos , Fosfatos de Inositol/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Insuficiencia Cardíaca/fisiopatología , Hemoglobinas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Fosfatos de Inositol/uso terapéutico , Ratones , Ratones Transgénicos , Oxígeno/metabolismo , ARN Mensajero , Resultado del TratamientoRESUMEN
Nitroxyl (HNO) exerts inotropic and lusitropic effects in myocardium, in part via activation of SERCA (sarcoplasmic reticulum calcium ATPase). To elucidate the molecular mechanism, adult rat ventricular myocytes were exposed to HNO derived from Angeli's salt. HNO increased the maximal rate of thapsigargin-sensitive Ca2+ uptake mediated by SERCA in sarcoplasmic vesicles and caused reversible oxidative modification of SERCA thiols. HNO increased the S-glutathiolation of SERCA, and adenoviral overexpression of glutaredoxin-1 prevented both the HNO-stimulated oxidative modification of SERCA and its activation, as did overexpression of a mutated SERCA in which cysteine 674 was replaced with serine. Thus, HNO increases the maximal activation of SERCA via S-glutathiolation at cysteine 674.
Asunto(s)
Antioxidantes/farmacología , Glutatión/metabolismo , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Óxidos de Nitrógeno/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Adenoviridae , Animales , Línea Celular , Cisteína/genética , Cisteína/metabolismo , Glutarredoxinas/biosíntesis , Glutarredoxinas/genética , Glutatión/genética , Humanos , Mutación , Nitritos/química , Nitritos/farmacología , Óxidos de Nitrógeno/química , Oxidación-Reducción/efectos de los fármacos , Procesamiento Proteico-Postraduccional/genética , Ratas , Retículo Sarcoplasmático/enzimología , Retículo Sarcoplasmático/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Transducción GenéticaRESUMEN
Background Inhibitors of the sodium-glucose linked transporter 2 improve cardiovascular outcomes in patients with or without type 2 diabetes mellitus, but the effects on cardiac energetics and mitochondrial function are unknown. We assessed the effects of sodium-glucose linked transporter 2 inhibition on mitochondrial function, high-energy phosphates, and genes encoding mitochondrial proteins in hearts of mice with and without diet-induced diabetic cardiomyopathy. Methods and Results Mice fed a control diet or a high-fat, high-sucrose diet received ertugliflozin mixed with the diet (0.5 mg/g of diet) for 4 months. Isolated mitochondria were assessed for functional capacity. High-energy phosphates were assessed by 31P nuclear magnetic resonance spectroscopy concurrently with contractile performance in isolated beating hearts. The high-fat, high-sucrose diet caused myocardial hypertrophy, diastolic dysfunction, mitochondrial dysfunction, and impaired energetic response, all of which were prevented by ertugliflozin. With both diets, ertugliflozin caused supernormalization of contractile reserve, as measured by rate×pressure product at high work demand. Likewise, the myocardial gene sets most enriched by ertugliflozin were for oxidative phosphorylation and fatty acid metabolism, both of which were enriched independent of diet. Conclusions Ertugliflozin not only prevented high-fat, high-sucrose-induced pathological cardiac remodeling, but improved contractile reserve and induced the expression of oxidative phosphorylation and fatty acid metabolism gene sets independent of diabetic status. These effects of sodium-glucose linked transporter 2 inhibition on cardiac energetics and metabolism may contribute to improved structure and function in cardiac diseases associated with mitochondrial dysfunction, such as heart failure.
Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Metabolismo Energético/efectos de los fármacos , Hipertrofia Ventricular Izquierda/prevención & control , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Disfunción Ventricular Izquierda/prevención & control , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Dieta Alta en Grasa , Sacarosa en la Dieta , Metabolismo Energético/genética , Regulación de la Expresión Génica , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacosRESUMEN
BACKGROUND: Biomarkers of extracellular matrix remodeling are associated with prevalent hypertension in cross-sectional studies, but their relations to longitudinal changes in blood pressure (BP) and hypertension incidence are unknown. METHODS AND RESULTS: We evaluated 595 nonhypertensive Framingham Offspring Study participants (mean age 55 years; 360 women) without prior heart failure or myocardial infarction who underwent routine measurements of plasma tissue inhibitor of metalloproteinase-1 (TIMP-1), metalloproteinase-9 (MMP-9), and procollagen III N-terminal peptide. We related plasma TIMP-1, procollagen III N-terminal peptide, and MMP-9 to the incidence of hypertension and progression of BP by >or=1 category (defined on the basis of the sixth report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure). On follow-up (4 years), 81 participants (51 women) developed hypertension, and 198 (114 women) progressed to a higher BP category. In multivariable models, a 1-SD increment of log-TIMP-1 was associated with a 50% higher incidence of hypertension (95% CI 1.08 to 2.08) and a 21% (95% CI 1.00 to 1.47) higher risk of BP progression. Individuals in the top TIMP-1 tertile had a 2.15-fold increased risk of hypertension (95% CI 0.99 to 4.68) and 1.68-fold (95% CI 1.05 to 2.70) increased risk of BP progression relative to the lowest tertile. Individuals with detectable MMP-9 had a 1.97-fold higher risk of BP progression (95% CI 1.06 to 3.64) than those with undetectable levels. Plasma procollagen III N-terminal peptide was not associated with hypertension incidence or BP progression. CONCLUSIONS: In the present community-based sample, higher TIMP-1 and MMP-9 concentrations were associated with BP progression on follow-up. Additional studies are warranted to confirm our findings.
Asunto(s)
Presión Sanguínea/fisiología , Matriz Extracelular/metabolismo , Hipertensión/sangre , Hipertensión/epidemiología , Biomarcadores/sangre , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Hipertensión/etiología , Incidencia , Masculino , Massachusetts/epidemiología , Persona de Mediana Edad , Factores de RiesgoRESUMEN
Mice with obesity and metabolic heart disease (MHD) due to a high-fat, high-sucrose diet were treated with placebo, a clinically relevant dose of sacubitril (SAC)/valsartan (VAL), or an equivalent dose of VAL for 4 months. There were striking differences between SAC/VAL and VAL with regard to: 1) diastolic dysfunction; 2) interstitial fibrosis; and to a lesser degree; 3) oxidative stress-all of which were more favorably affected by SAC/VAL. SAC/VAL and VAL similarly attenuated myocardial hypertrophy and improved myocardial energetics. In mice with obesity-related MHD, neprilysin inhibition exerts favorable effects on diastolic function.
RESUMEN
Vascular smooth muscle cell (SMC) migration is an important mechanism in atherogenesis and postangioplasty arterial remodeling. Previously, we demonstrated that the proinflammatory cytokine interleukin (IL)-18 is a potent inducer of SMC migration. Since extracellular matrix metalloproteinase inducer (EMMPRIN) stimulates ECM degradation and facilitates cell migration, we investigated whether IL-18 and EMMPRIN regulate each other's expression, whether their cross talk induces SMC migration, and whether the phytoalexin resveratrol inhibits IL-18-EMMPRIN signaling and SMC migration. Our studies demonstrate that 1) IL-18 induces EMMPRIN mRNA and protein expressions and stimulates EMMPRIN secretion from human aortic SMCs; 2) IL-18 stimulates EMMPRIN expression via oxidative stress and phosphatidylinositol 3-kinase (PI3K)-Akt-ERK signaling; 3) IL-18-stimulated SMC migration is significantly blunted by EMMPRIN knockdown, EMMPRIN function-blocking antibodies, or adenoviral transduction of mutant EMMPRIN; 4) conversely, EMMPRIN stimulates IL-18 expression and secretion via PI3K, Akt, and ERK; and 5) resveratrol attenuates IL-18- and EMMPRIN-mediated PI3K, Akt, and ERK activations; blunts IL-18-mediated oxidative stress; blocks IL-18-EMMPRIN cross-regulation; and inhibits SMC migration. Collectively, our results demonstrate that the coexpression and regulation of IL-18 and EMMPRIN in the vessel wall may amplify the inflammatory cascade and promote atherosclerosis and remodeling. Resveratrol, via its antioxidant and anti-inflammatory properties, has the potential to inhibit the progression of atherosclerosis by blocking IL-18 and EMMPRIN cross-regulation and SMC migration.
Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Basigina/metabolismo , Movimiento Celular/efectos de los fármacos , Interleucina-18/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Estilbenos/farmacología , Aorta/citología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/inmunología , Aterosclerosis/patología , Basigina/genética , Células Cultivadas , Reactivos de Enlaces Cruzados/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Resveratrol , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Vasculitis/tratamiento farmacológico , Vasculitis/inmunología , Vasculitis/patologíaRESUMEN
Mice challenged with lipopolysaccharide develop cardiomyopathy in a sex and redox-dependent fashion. Here we extended these studies to the cecal ligation and puncture (CLP) model.We compared male and female FVB mice (wild type, WT) and transgenic littermates overexpressing myocardial catalase (CAT). CLP induced 100% mortality within 4 days, with similar mortality rates in male and female WT and CAT mice. 24âh after CLP, isolated (Langendorff) perfused hearts showed depressed contractility in WT male mice, but not in male CAT or female WT and CAT mice. In WT male mice, CLP induced a depression of cardiomyocyte sarcomere shortening (ΔSS) and calcium transients (ΔCai), and the inhibition of the sarcoplasmic reticulum Ca ATPase (SERCA). These deficits were associated with overexpression of NADPH-dependent oxidase (NOX)-1, NOX-2, and cyclooxygenase 2 (COX-2), and were partially prevented in male CAT mice. Female WT mice showed unchanged ΔSS, ΔCai, and SERCA function after CLP. At baseline, female WT mice showed partially depressed ΔSS, ΔCai, and SERCA function, as compared with male WT mice, which were associated with NOX-1 overexpression and were prevented in CAT female mice.In conclusion, in male WT mice, septic shock induces myocardial NOX-1, NOX-2, and COX-2, and redox-dependent dysregulation of myocardial Ca transporters. Female WT mice are resistant to CLP-induced cardiomyopathy, despite increased NOX-1 and COX-2 expression, suggesting increased antioxidant capacity. Female resistance occurred in association with NOX-1 overexpression and signs of increased oxidative signaling at baseline, indicating the presence of a protective myocardial redox hormesis mechanism.
Asunto(s)
Hormesis/fisiología , Miocardio/metabolismo , Miocardio/patología , Sepsis/metabolismo , Sepsis/patología , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Catalasa/metabolismo , Ciego/lesiones , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Femenino , Ligadura/efectos adversos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 2/metabolismo , Punciones/efectos adversos , Sarcómeros/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismoRESUMEN
Aims: Metabolic syndrome is associated with metabolic heart disease (MHD) that is characterized by left ventricular (LV) hypertrophy, interstitial fibrosis, contractile dysfunction, and mitochondrial dysfunction. Overexpression of catalase in mitochondria (transgenic expression of catalase targeted to the mitochondria [mCAT]) prevents the structural and functional features of MHD caused by a high-fat, high-sucrose (HFHS) diet for ≥4 months. However, it is unclear whether the effect of mCAT is due to prevention of reactive oxygen species (ROS)-mediated cardiac remodeling, a direct effect on mitochondrial function, or both. To address this question, we measured myocardial function and energetics in mice, with or without mCAT, after 1 month of HFHS, before the development of cardiac structural remodeling. Results: HFHS diet for 1 month had no effect on body weight, heart weight, LV structure, myocyte size, or interstitial fibrosis. Isolated cardiac mitochondria from HFHS-fed mice produced 2.2- to 3.8-fold more H2O2, and 16%-29% less adenosine triphosphate (ATP). In isolated beating hearts from HFHS-fed mice, [phosphocreatine (PCr)] and the free energy available for ATP hydrolysis (ΔGâ¼ATP) were decreased, and they failed to increase with work demands. Overexpression of mCAT normalized ROS and ATP production in isolated mitochondria, and it corrected myocardial [PCr] and ΔGâ¼ATP in the beating heart. Innovation: This is the first demonstration that in MHD, mitochondrial ROS mediate energetic dysfunction that is sufficient to impair contractile function. Conclusion: ROS produced and acting in the mitochondria impair myocardial energetics, leading to slowed relaxation and decreased contractile reserve. These effects precede structural remodeling and are corrected by mCAT, indicating that ROS-mediated energetic impairment, per se, is sufficient to cause contractile dysfunction in MHD.