RESUMEN
The postnatal environment is challenging for the preterm neonate with exposure to hypoxic and excitotoxic events, amplified by premature loss of placentally derived neurosteroids. Between preterm birth and term equivalent age (TEA), cerebellar development continues despite these challenges. We hypothesize that neurosteroid replacement therapy during this time will support optimal cerebellar development. Guinea pig sows delivered at term (â¼69 days gestation) or were induced to deliver preterm (â¼62 days), with preterm pups receiving ganaxolone or vehicle until TEA. Postnatal assessments comprised salivary cortisol (corrected postnatal age [CPA] 0, 7, 38), behavioral analysis (CPA7, 38), and tissue collection (CPA0 and CPA40). Neurodevelopmental markers (MBP, Olig2, and NeuN) were assessed in the cerebellum by immunohistochemistry, whereas RT-PCR was utilized to investigate key inhibitory/excitatory pathways and oligodendrocyte lineage markers. Following preterm birth, there was evidence of a hyperactive phenotype, increased salivary cortisol concentrations, and impaired myelination and oligodendrocyte maturation at the protein level. mRNA expressions of key inhibitory/excitatory pathways and myelin stability were also altered following preterm birth. Importantly, we showed that neurosteroid replacement therapy returns cerebellar development and behavior toward a term-like phenotype. Therefore, ganaxolone may reduce the vulnerability of the cerebellum to postnatal challenges arising from preterm birth.
Asunto(s)
Cerebelo , Vaina de Mielina , Oligodendroglía , Animales , Cobayas , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Femenino , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Pregnanolona/farmacología , Pregnanolona/análogos & derivados , Pregnanolona/metabolismo , Nacimiento Prematuro/tratamiento farmacológico , Animales Recién Nacidos , Embarazo , Hidrocortisona/metabolismoRESUMEN
BACKGROUND AND OBJECTIVES: Very-low calorie diets (VLCD) achieve weight loss and remission of Type 2 diabetes (T2DM), but efficacy and acceptability in non-European populations is less clear. This feasibility study examines the impact of 10% weight loss through VLCD on metabolic and body composition outcomes in a multi-ethnic cohort of Aotearoa New Zealand (AoNZ) men with prediabetes/early T2DM, and VLCD tolerability/cultural acceptability. METHODS AND STUDY DESIGN: Participants followed a VLCD intervention (mean energy 3033kJ/day) until achievement of 10% weight loss. An oral glucose tolerance test (OGTT), hyperinsulinaemic isoglycaemic clamp with stable isotopes, hood calorimetry and dual-energy Xray absorptiometry (DXA) were undertaken before and after intervention. Qualitative data on VLCD tolerability/cultural acceptability were collected. RESULTS: Fifteen participants were enrolled; nine achieved 10% weight loss. In this group, mean HbA1c reduced by 4.8mmol/mol (2.4-7.1) and reverted to normoglycaemia in n=5/9; mean body weight reduced by 12.0 kg (11.0-13.1) and whole-body glucose disposal improved by 1.5 mg kgFFM-1 min-1 (0.7-2.2). Blood pressure and fasting triglycerides improved significantly. No changes in hepatic glu-cose metabolism were found. In all participants who attended completion testing, HbA1c reduced by 3.4mmol/mol (SD 3.5) and total weight by 9.0kg (SD 5.7). The intervention was highly tolerable/culturally acceptable however challenges with fulfilment of cultural obligations were described. CONCLUSIONS: Results support VLCD use in AoNZ however further work to investigate ethnic differences in physiological response to VLCDs and to optimise protocols for multi-ethnic populations are required.
Asunto(s)
Restricción Calórica , Diabetes Mellitus Tipo 2 , Estudios de Factibilidad , Estado Prediabético , Humanos , Diabetes Mellitus Tipo 2/dietoterapia , Masculino , Estado Prediabético/dietoterapia , Estado Prediabético/terapia , Nueva Zelanda , Persona de Mediana Edad , Restricción Calórica/métodos , Estudios de Cohortes , Adulto , Anciano , Composición Corporal , Pérdida de Peso , GlucemiaRESUMEN
NEW FINDINGS: What is the topic of this review? Thermal extremes disproportionately affect populations with cardiovascular conditions. Preterm birth, across all gestational age ranges below 37 weeks, has been identified as a non-modifiable risk factor for cardiovascular disease. The hypothesis is presented that individuals born preterm are at an increased risk of cardiovascular morbidity and mortality during thermal extremes. What advances does it highlight? Cardiovascular stress tests performed in preterm-born populations, from infancy through adulthood, highlight a progression of cardiovascular dysfunction accelerating through adolescence and adulthood. This dysfunction has many similarities with populations known to be at risk in thermal extremes. ABSTRACT: Preterm-born individuals are a uniquely vulnerable population. Preterm exposure to the extrauterine environment and the (mal)adaptations that occur during the transitional period can result in alterations to their macro- and micro-physiological state. The physiological adaptations that increase survival in the short term may place those born preterm on a trajectory of lifelong dysfunction and later-life decompensation. Cardiovascular compensation in children and adolescents, which masks this trajectory of dysfunction, is overcome under stress, such that the functional cardiovascular capacity is reduced and recovery impaired following physiological stress. This has implications for their response to thermal stress. As the Anthropocene introduces greater changes in our environment, thermal extremes will impact vulnerable populations as yet unidentified in the climate change context. Here, we present the hypothesis that individuals born preterm are a vulnerable population at an increased risk of cardiovascular morbidity and mortality during thermal extremes.
Asunto(s)
Enfermedades Cardiovasculares , Nacimiento Prematuro , Niño , Femenino , Adolescente , Recién Nacido , Humanos , Lactante , Poblaciones Vulnerables , Edad Gestacional , Factores de RiesgoRESUMEN
Cardiovascular disease is a leading cause of morbidity and mortality worldwide. Stress tests are frequently employed to expose early signs of cardiovascular dysfunction or disease and can be employed, for example, in the context of preterm birth. We aimed to establish a safe and effective thermal stress test to examine cardiovascular function. Guinea pigs were anaesthetized using a 0.8% isoflurane, 70% N2O mix. ECG, non-invasive blood pressure, laser Doppler flowmetry, respiratory rate, and an array of skin and rectal thermistors were applied. A physiologically relevant heating and a cooling thermal stress test was developed. Upper and lower thermal limits for core body temperature were set at 41.5 OC and 34 OC, for the safe recovery of animals. This protocol therefore presents a viable thermal stress test for use in guinea pig models of health and disease that facilitates exploration of whole-system cardiovascular function.
Asunto(s)
Sistema Cardiovascular , Nacimiento Prematuro , Recién Nacido , Humanos , Femenino , Cobayas , Animales , Prueba de Esfuerzo , Piel/irrigación sanguínea , FríoRESUMEN
KEY POINTS: Traumatic haemorrhagic shock carries significant morbidity and mortality related to the severity and duration of tissue hypoperfusion, much of which occurs in the pre-hospital environment where therapy must be easy to use and would augment, not replace, local haemorrhage control measures. Vasopressor therapy use in haemorrhagic shock remains controversial. Potential benefits from improved blood pressure and tissue perfusion need to be weighed against possible harm from increased blood loss if haemorrhage is uncontrolled. We demonstrate that 20 IU I.M. vasopressin produces a progressive, sustained and clinically significant increase in blood pressure and carotid blood flow compared to 1 mg I.M. adrenaline or placebo in an animal model of controlled haemorrhagic shock. I.M. vasopressin may play a role in the early management of haemorrhagic shock by improving cerebral perfusion and haemodynamic stability; however, further studies are required to establish the potential benefit against the risk of exacerbating haemorrhage, if it is uncontrolled. ABSTRACT: Haemorrhagic shock causes significant morbidity and mortality. Novel pre-hospital therapy to improve haemodynamic stability and cerebral perfusion may improve outcomes but remains controversial. In an ovine model of controlled haemorrhagic shock, the effects of early intramuscular arginine vasopressin (AVP), adrenaline or placebo on haemodynamic stability and cerebral perfusion were compared. Carotid pressure and flow catheters were placed in healthy, anaesthetized adult ewes. Frontal cortex cerebral oxygenation was measured using near infrared spectroscopy. Controlled, rapid, haemorrhage (â¼30% estimated blood volume) was induced. Five minutes post-bleed a 1 ml intramuscular dose of 0.9% saline, adrenaline 1 mg or AVP 20 IU was administered. Carotid blood pressure and flow improved significantly in the AVP group over the first 30 min post-intervention. To emulate standard trauma care, 1 L of 0.9% saline was infused 30 min post-bleed followed by re-transfusion of the sheep's own blood at 60 min post-bleed. Carotid blood pressure and flow in the AVP group remained significantly higher post-crystalloid infusion, but this difference was lost post-blood transfusion. Data were analysed by two-way ANOVA with time, group as the main factors. When compared to saline or adrenaline, a single dose of intramuscular AVP resulted in a progressive and sustained increase in carotid artery blood pressure and flow with commensurate increase in cerebral oxygenation. Intramuscular AVP has potential as an emergency pre-hospital therapy following exsanguinating haemorrhage; however, further studies are required to investigate whether the benefit of improved perfusion pressure outweighs the risks of exacerbating ongoing bleeding.
Asunto(s)
Arginina Vasopresina , Circulación Cerebrovascular , Hemorragia , Ovinos , Animales , Femenino , Arginina Vasopresina/farmacología , Presión Sanguínea/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Hemorragia/patología , Vasoconstrictores/farmacologíaRESUMEN
Temperature of the skin (TSk ) and core (TC ) play key roles in sleep-wake regulation. The diurnal combination of low TSk and high TC facilitates alertness, whereas the transition to high TSk and low TC correlates with sleepiness. Sleepiness and deteriorating vigilance are induced with peripheral warming, whereas peripheral cooling appears to transiently improve vigilance in narcolepsy. This study aimed to test the hypothesis that foot cooling would maintain vigilance during extended wakefulness in healthy adults. Nine healthy young adult participants with habitually normal sleep completed three constant-routine trials in randomized crossover order. Trials began at 22:30 hours, and involved continuous mild foot cooling (30°C), moderate foot cooling (25°C) or no foot cooling, while undertaking six × 10-min Psychomotor Vigilance Tasks and seven × 7-min Karolinska Drowsiness Tasks, interspersed with questionnaires of sleepiness and thermal perceptions. Foot temperatures in control, mild and moderate cooling averaged 34.5 ± 0.5°C, 30.8 ± 0.2°C and 26.4 ± 0.1°C (all p < .01), while upper-limb temperatures remained stable (34-35°C) and TC declined (approximately -0.12°C per hr) regardless of trial (p = .84). Foot cooling did not improve vigilance (repeated-measures-ANOVA interaction for response speed: p = .45), but transiently reduced subjective sleepiness (-0.8 ± 0.8; p = .004). Participants felt cooler throughout cooling trials, but thermal comfort was unaffected (p = .43), as were almost all Karolinska Drowsiness Tasks' encephalographic parameters. In conclusion, mild or moderate cooling of the feet did not attenuate declines in vigilance or core temperature of healthy young adults during the period of normal sleep onset and early sleep, and any effect on sleepiness was small and transient.
Asunto(s)
Frío , Pie/irrigación sanguínea , Desempeño Psicomotor/fisiología , Sueño/fisiología , Somnolencia , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Adulto JovenRESUMEN
Adversity early in life can modify the trajectory for disease risk extending decades beyond the event. Preterm birth produces persistent cardiovascular alterations that may appear maladaptive in adulthood. We have previously hypothesized that those born preterm may exhibit cardiovascular vulnerability in the climate change context. Further, this vulnerability may be present as early as childhood. We aimed to identify the early signs of cardiovascular dysfunction at childhood-equivalent age using our animal model of preterm birth. Using a whole-body thermal stress test, guinea pigs aged 35-d and 38-d (equivalent to 8-10-year-old children) and born at term or preterm gestations were exposed to progressive hyper- (TC = 41.5°C) and hypo-thermia (TC = 34°C; normothermia TC = 39°C). Comprehensive cardiovascular monitoring included ECG, blood pressure, microvascular perfusion, blood gas, and catecholamine profile, as well as skin and core body temperature. Preterm-born animals exhibited attenuated vascular responses to hyperthermic stress, and a significant elevation in systolic blood pressure in response to hypothermic stress. Such responses are similar to those observed in elderly populations and indicate the presence of cardiovascular dysfunction. This is the first study to demonstrate the impact of preterm birth on the cardiovascular response to both heat and cold stress. Further, this dysfunction has been observed at an earlier age than that achievable using traditional stress testing techniques. The present findings warrant further investigation.
Asunto(s)
Nacimiento Prematuro , Animales , Cobayas , Femenino , Nacimiento Prematuro/fisiopatología , Masculino , Presión Sanguínea/fisiología , Frío/efectos adversos , Calor/efectos adversos , Frecuencia Cardíaca/fisiología , Embarazo , Respuesta al Choque Térmico/fisiologíaRESUMEN
Background: Preterm birth can lead to brain injury and currently there are no targeted therapies to promote postnatal brain development and protect these vulnerable neonates. We have previously shown that the neurosteroid-analogue ganaxolone promotes white matter development and improves behavioural outcomes in male juvenile guinea pigs born preterm. Adverse side effects in this previous study necessitated this current follow-up dosing study, where a focus was placed upon physical wellbeing during the treatment administration and markers of neurodevelopment at the completion of the treatment period. Methods: Time-mated guinea pigs delivered preterm (d62) by induction of labour or spontaneously at term (d69). Preterm pups were randomized to receive no treatment (Prem-CON) or ganaxolone at one of three doses [0.5 mg/kg ganaxolone (low dose; LOW-GNX), 1.0 mg/kg ganaxolone (mid dose; MID-GNX), or 2.5 mg/kg ganaxolone (high dose; HIGH-GNX) in vehicle (45% ß-cyclodextrin)] daily until term equivalence age. Physical parameters including weight gain, ponderal index, supplemental feeding, and wellbeing (a score based on respiration, activity, and posture) were recorded throughout the preterm period. At term equivalence, brain tissue was collected, and analysis of hippocampal neurodevelopment was undertaken by immunohistochemistry and RT-PCR. Results: Low and mid dose ganaxolone had some impacts on early weight gain, supplemental feeding, and wellbeing, whereas high dose ganaxolone significantly affected all physical parameters for multiple days during the postnatal period when compared to the preterm control neonates. Deficits in the preterm hippocampus were identified using neurodevelopmental markers including mRNA expression of oligodendrocyte lineage cells (CSPG4, MBP), neuronal growth (INA, VEGFA), and the GABAergic/glutamatergic system (SLC32A1, SLC1A2, GRIN1, GRIN2C, DLG4). These deficits were not affected by ganaxolone at the doses used at the equivalent of normal term. Conclusion: This is the first study to investigate the effects of a range of doses of ganaxolone to improve preterm brain development. We found that of the three doses, only the highest dose of ganaxolone (2.5 mg/kg) impaired key indicators of physical health and wellbeing over extended periods of time. Whilst it may be too early to see improvements in markers of neurodevelopment, further long-term study utilising the lower doses are warranted to assess functional outcomes at ages when preterm birth associated behavioural disorders are observed.
RESUMEN
Anesthesia is frequently used to facilitate physiological monitoring during interventional animal studies. However, its use may induce cardiovascular (central and peripheral), respiratory, and thermoregulatory depression, confounding results in anesthetized animals. Despite the wide utility of guinea pigs as a translational platform, anesthetic protocols remain unstandardized for extended physiological studies in this species. Therefore, optimizing an anesthetic protocol that balances stable anesthesia with intact cardiorespiratory and metabolic function is crucial. To achieve this, 12 age and sex-matched juvenile Dunkin Hartley guinea pigs underwent extended anesthesia (≤150 min) with either (a) isoflurane (ISO: 1.5%), or (b) isoflurane + N2 O (ISO+ N2 O: 0.8% +70%), in this randomized cross-over designed study. Cardiovascular (HR, SBP, peripheral microvascular blood flow), respiratory (respiratory rate, SpO2 ), and thermal (Tre and Tsk ) measures were recorded continuously throughout anesthesia. Blood gas measures pre- and post- anesthesia were performed. Incorporation of 70% N2 O allowed for significant reductions in isoflurane (to 0.8%) while maintaining an effective anesthetic depth for prolonged noninvasive physiological examination in guinea pigs. ISO+N2 O maintained heart rate, peripheral blood flow, respiratory rate, and thermoregulatory function at levels closest to those of conscious animals, especially in females; however, it did not fully rescue anesthesia-induced hypotension. These results suggest that for studies requiring prolonged physiological examination (≤150 min) in guinea pigs, 0.8% isoflurane with a 70% N2 O adjuvant provides adequate anesthesia, while minimizing associated cardiorespiratory depression. The preservation of cardiorespiratory status is most marked throughout the first hour of anesthesia.
Asunto(s)
Adyuvantes Farmacéuticos , Anestesia por Inhalación/métodos , Anestésicos por Inhalación , Isoflurano , Óxido Nitroso , Animales , Análisis de los Gases de la Sangre , Presión Sanguínea/efectos de los fármacos , Regulación de la Temperatura Corporal/efectos de los fármacos , Electrocardiografía/efectos de los fármacos , Femenino , Cobayas , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Microcirculación/efectos de los fármacos , Frecuencia Respiratoria/efectos de los fármacos , Temperatura Cutánea/efectos de los fármacosRESUMEN
BACKGROUND: Non-invasive physiological monitoring can induce stress in laboratory animals. Sedation reduces the level of restraint required, thereby improving the validity of physiological signals measured. However, sedatives may alter physiological equilibrium introducing unintended bias and/or, masking the experimental outcomes of interest. We aimed to investigate the cardiorespiratory effects of four short-acting sedatives in juvenile guinea pigs. METHOD: 12 healthy, 38 (26-46) day-old Dunkin Hartley guinea pigs were included in this blinded, randomised, crossover design study. Animals were sedated by intramuscular injection using pre-established minimum effective doses of either alfaxalone (5 mg/kg), diazepam (5 mg/kg), ketamine (30 mg/kg), or midazolam (2 mg/kg) administered in random order with a minimum washout period of 48 hours between agents. Sedative depth, a composite score comprised of five assessment criteria, was observed every 5-min from dosing until arousal. Physiological monitoring of cardiorespiratory status included measures of heart rate, blood pressure, respiratory rate, and peripheral microvascular perfusion. RESULTS: Ketamine and alfaxalone were most effective in inducing stable sedation suitable for physiological monitoring, and diazepam less-so. Midazolam was unsuitable due to excessive hypersensitivity. All sedatives significantly increased heart rate above non-sedated control rates (P<0.0001), without altering blood pressure or microvascular perfusion. Alfaxalone and ketamine reduced respiratory rate relative to their control condition (P<0.0001, P = 0.05, respectively), but within normative ranges. CONCLUSION: Ketamine and alfaxalone are the most effective sedatives for inducing short duration, stable sedation with minimal cardiorespiratory depression in guinea pigs, while diazepam is less-so. However, alfaxalone is the most appropriate sedative for longitudinal studies requiring multiple physiological timepoints.