Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884881

RESUMEN

The objective of the present study was to review the existing data on the association between Zn status and characteristics of gut microbiota in various organisms and the potential role of Zn-induced microbiota in modulating systemic effects. The existing data demonstrate a tight relationship between Zn metabolism and gut microbiota as demonstrated in Zn deficiency, supplementation, and toxicity studies. Generally, Zn was found to be a significant factor for gut bacteria biodiversity. The effects of physiological and nutritional Zn doses also result in improved gut wall integrity, thus contributing to reduced translocation of bacteria and gut microbiome metabolites into the systemic circulation. In contrast, Zn overexposure induced substantial alterations in gut microbiota. In parallel with intestinal effects, systemic effects of Zn-induced gut microbiota modulation may include systemic inflammation and acute pancreatitis, autism spectrum disorder and attention deficit hyperactivity disorder, as well as fetal alcohol syndrome and obesity. In view of both Zn and gut microbiota, as well as their interaction in the regulation of the physiological functions of the host organism, addressing these targets through the use of Zn-enriched probiotics may be considered an effective strategy for health management.


Asunto(s)
Microbioma Gastrointestinal , Intestinos/metabolismo , Probióticos , Zinc/metabolismo , Animales , Humanos , Intestinos/microbiología
2.
J Nanobiotechnology ; 13: 50, 2015 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-26253116

RESUMEN

BACKGROUND: The cause-effect relationships between physicochemical properties of amphiphilic [60]fullerene derivatives and their toxicity against bacterial cells have not yet been clarified. In this study, we report how the differences in the chemical structure of organic addends in 10 originally synthesized penta-substituted [60]fullerene derivatives modulate their zeta potential and aggregate's size in salt-free and salt-added aqueous suspensions as well as how these physicochemical characteristics affect the bioenergetics of freshwater Escherichia coli and marine Photobacterium phosphoreum bacteria. Dynamic light scattering, laser Doppler micro-electrophoresis, agarose gel electrophoresis, atomic force microscopy, and bioluminescence inhibition assay were used to characterize the fullerene aggregation behavior in aqueous solution and their interaction with the bacterial cell surface, following zeta potential changes and toxic effects. RESULTS: Dynamic light scattering results indicated the formation of self-assembled [60]fullerene aggregates in aqueous suspensions. The measurement of the zeta potential of the particles revealed that they have different surface charges. The relationship between these physicochemical characteristics was presented as an exponential regression that correctly described the dependence of the aggregate's size of penta-substituted [60]fullerene derivatives in salt-free aqueous suspension from zeta potential value. The prevalence of DLVO-related effects was shown in salt-added aqueous suspension that decreased zeta potential values and affected the aggregation of [60]fullerene derivatives expressed differently for individual compounds. A bioluminescence inhibition assay demonstrated that the toxic effect of [60]fullerene derivatives against E. coli cells was strictly determined by their positive zeta potential charge value being weakened against P. phosphoreum cells in an aquatic system of high salinity. Atomic force microscopy data suggested that the activity of positively charged [60]fullerene derivatives against bacterial cells required their direct interaction. The following zeta potential inversion on the bacterial cells surface was observed as an early stage of toxicity mechanism that violates the membrane-associated energetic functions. CONCLUSIONS: The novel data about interrelations between physicochemical parameters and toxic properties of amphiphilic [60]fullerene derivatives make possible predicting their behavior in aquatic environment and their activity against bacterial cells.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Fulerenos/química , Fulerenos/farmacología , Photobacterium/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Humanos , Electricidad Estática , Agua/química
3.
Biol Trace Elem Res ; 202(2): 504-512, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37183220

RESUMEN

The objective of the present study was to evaluate trace element and minerals levels in the serum of cows transiting from diets consumed in feedlot or under grazing. A total of 30 healthy 5-6 years old cows of the Red Steppe breed were involved in the study. Blood samples were collected at the end of the feedlot period (end of April) and during the pasture period (end of June). Serum essential trace element and mineral levels were evaluated using inductively coupled plasma mass spectrometry. The obtained data demonstrate that serum K levels in cows during the feedlot period exceeded those in the pasture period by 50%, whereas serum P values in the pasture period were significantly higher than in the feedlot period by 20%. Serum Li levels in cows during the feedlot feeding period were nearly 3-fold higher than the respective values in a pasture period. In addition, serum B, Sr, and Zn concentrations in cows during a pasture period exceeded those observed upon feedlot feeding by 38%, 40%, and 13%, respectively. In contrast, serum I and V levels in a feedlot period were 32% and 77% higher when compared to the respective values in a pasture period. Multiple regression analysis demonstrated that Cr, Cu, I, Na, and V are positively associated with feedlot feeding. At the same time, serum Zn and to a lesser extent Sr values were directly associated with the pasture period. Therefore, the results of the present study demonstrated that feedlot and pasture rations have a significant impact on trace element and mineral metabolism in dairy cows.


Asunto(s)
Oligoelementos , Femenino , Bovinos , Animales , Oligoelementos/análisis , Leche/química , Lactancia , Minerales/análisis , Dieta/veterinaria , Alimentación Animal/análisis , Industria Lechera/métodos
4.
Vet World ; 17(8): 1864-1871, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39328446

RESUMEN

Background and Aim: The existing data demonstrate that gut microbiota is involved in regulating mineral metabolism in cattle, although the data are quite contradictory. The study aimed to evaluate Saccharomyces cerevisiae-based probiotic's effects on gut microbiota, systemic metabolism, and dairy cows' essential trace element and mineral body burden. Materials and Methods: Fifteen cows received a daily supplement of a 50 g S. cerevisiae-based probiotic, fortified with methionine, choline, eugenol, cinnamaldehyde, and Capsicum oleoresin, for a month. 16S metagenomic sequencing was used to evaluate the taxonomic features of fecal microbiota. Serum trace elements and minerals levels were determined through inductively coupled plasma mass spectrometry. Results: Supplementation with S. cerevisiae-based probiotic complex significantly increased alpha and beta diversity, as well as the abundance of Mediterranea and Clostridium IV within the Bacillota phylum, whereas that of Bacteroidota and specifically unclassified Bacteroidales and unclassified Oscillospiraceae decreased. Following probiotic supplementation with the S. cerevisiae-based complex, gut microbiota modulation led to a significant boost in circulating levels of calcium, copper, selenium, and zinc. Creatinine levels decreased while total cholesterol levels increased within normal limits in the serum analysis. Conclusion: The observed improvement in trace elements and minerals in dairy cows might be due to changes in intestinal microflora caused by supplementation. Therefore, probiotic supplementation in cattle may be considered a potential tool for improvement of mineral nutrition in cattle. However, the influence of probiotic treatment and modulation of mineral metabolism on milk productivity and overall performance in cattle is yet to be estimated.

5.
Biol Trace Elem Res ; 200(6): 2709-2715, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34476676

RESUMEN

The objective of the present study was to assess hair and serum trace element and mineral levels in dairy cows in relation to daily milk yield. A total of 70 healthy 5-6-year-old Simmental cows were divided into two groups (n = 35) with high and low daily milk yield using median as a cut-off value. Hair and serum trace element and mineral content was evaluated using inductively coupled plasma mass-spectrometry. A nearly twofold difference in daily milk yield (43.8 ± 9.7 vs 21.3 ± 7.1 L/day, p < 0.001) was significantly associated with 11% lower hair Cu (p = 0.043) and 35% higher Se levels (p = 0.058) content when compared animals with lower daily milk yield. Serum trace element levels were found to be more tightly associated with milk productivity in dairy cows. Particularly, serum levels of Se and Zn were found to be 73 and 35% higher in cows with higher milk productivity in comparison to animals with lower milk production, respectively. Serum Co levels also tended to increase with higher milk productivity. Serum minerals including Ca, Mg, and P were also found to be higher in highly productive cows by 6%, 14%, and 71%, respectively. The overall regression model based on serum trace element and mineral levels accounted for 38% of daily milk production variability. Generally, improvement of essential trace element and mineral supply, as well as prevention of copper overload in dairy cows, may be considered the potential tool for modulation of milk productivity.


Asunto(s)
Leche , Oligoelementos , Animales , Bovinos , Dieta/veterinaria , Femenino , Cabello/química , Lactancia , Leche/química , Minerales/análisis , Oligoelementos/análisis
6.
Biol Trace Elem Res ; 200(2): 591-599, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33723798

RESUMEN

The objective of the present study was assessment of the major copper and zinc species in dairy cow blood serum using a hybrid high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) technique. A total of seventeen 5-6-year-old female Simmental cows, cultivated in the Southern Ural region, were examined. Speciation of serum Cu and Zn was performed using chromatographic PerkinElmer Series 200 system equipped with Agilent Bio SEC-5 Column and docked with NexION 300D mass spectrometer. Analysis of serum 63Cu species revealed four major fractions containing 2.5% (A), 15.6% (B), 75.6% (C), and 11.9% (D) of total copper levels. The revealed fractions could be assigned to tetrameric and dimeric macroglobulin, ceruloplasmin, albumin, and low molecular mass (LMM) copper compounds, respectively. Minor fraction (E) containing <1% of total serum Cu levels may be represented by low-molecular mass Cu species. Speciation analysis also revealed four Zn fractions containing 6.3% (A), 16.9% (B), 71% (C), and 3% (D) of total Zn levels that may be attributed to zinc-bound tetrameric and dimeric macroglobulin, albumin, and Zn-amino acid compounds. Correlation analysis demonstrated that relative levels (%) of Zn-B (dimeric α2-macroglobulin), Zn-C (albumin), and Zn-D (LMM) fractions correlate inversely with Cu-A (monomeric α2-macroglobulin) (r = -0.600), Cu-D (albumin) (r = -0.696), and Cu-C (ceruloplasmin) (r = -0.652), respectively. The obtained data demonstrate the particular features of Zn and Cu transport in dairy cows that may be used for assessment of dietary status of trace elements.


Asunto(s)
Cobre , Zinc , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Ligandos , Espectrometría de Masas
8.
FEBS Lett ; 550(1-3): 84-8, 2003 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-12935891

RESUMEN

The somatic isoform of angiotensin-converting enzyme (ACE) consists of two homologous domains (N- and C-domains), each bearing a catalytic site. We have used the two-domain ACE form and its individual domains to compare characteristics of different domains and to probe mutual functioning of the two active sites within a bovine ACE molecule. The substrate Cbz-Phe-His-Leu (N-carbobenzoxy-L-phenylalanyl-L-histidyl-L-leucine; from the panel of seven) was hydrolyzed faster by the N-domain, the substrates FA-Phe-Gly-Gly (N-(3-[2-furyl]acryloyl)-L-phenylalanyl-glycyl-glycine) and Hip-His-Leu (N-benzoyl-glycyl-L-histidyl-L-leucine) were hydrolyzed by both domains with equal rates, while other substrates were preferentially hydrolyzed by the C-domain. The inhibitor captopril ((2S)-1-(3-mercapto-2-methylpropionyl)-L-proline) bound to the N-domain more effectively than to the C-domain, whereas lisinopril ((S)-N(alpha)-(1-carboxy-3-phenylpropyl)-L-lysyl-L-proline) bound to equal extent with all ACE forms. However, active site titration with lisinopril assayed by hydrolysis of FA-Phe-Gly-Gly revealed that 1 mol of inhibitor/mol of enzyme abolished the activity of either two-domain or single-domain ACE forms, indicating that a single active site functions in bovine somatic ACE. Neither of the k(cat) values obtained for somatic enzyme was the sum of k(cat) values for individual domains, but in every case the value of the catalytic constant of the hydrolysis of the substrate by the two-domain ACE represented the mean quantity of the values of the corresponding catalytic constants obtained for single-domain forms. The results indicate that the two active sites within bovine somatic ACE exhibit strong negative cooperativity.


Asunto(s)
Peptidil-Dipeptidasa A/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Sitios de Unión , Captopril/farmacología , Bovinos , Hidrólisis , Cinética , Lisinopril/farmacología , Oligopéptidos/metabolismo , Péptidos/química , Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Volumetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA