Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 573(7772): 122-125, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31413368

RESUMEN

Fossilized eyes permit inferences of the visual capacity of extinct arthropods1-3. However, structural and/or chemical modifications as a result of taphonomic and diagenetic processes can alter the original features, thereby necessitating comparisons with modern species. Here we report the detailed molecular composition and microanatomy of the eyes of 54-million-year-old crane-flies, which together provide a proxy for the interpretation of optical systems in some other ancient arthropods. These well-preserved visual organs comprise calcified corneal lenses that are separated by intervening spaces containing eumelanin pigment. We also show that eumelanin is present in the facet walls of living crane-flies, in which it forms the outermost ommatidial pigment shield in compound eyes incorporating a chitinous cornea. To our knowledge, this is the first record of melanic screening pigments in arthropods, and reveals a fossilization mode in insect eyes that involves a decay-resistant biochrome coupled with early diagenetic mineralization of the ommatidial lenses. The demonstrable secondary calcification of lens cuticle that was initially chitinous has implications for the proposed calcitic corneas of trilobites, which we posit are artefacts of preservation rather than a product of in vivo biomineralization4-7. Although trilobite eyes might have been partly mineralized for mechanical strength, a (more likely) organic composition would have enhanced function via gradient-index optics and increased control of lens shape.


Asunto(s)
Artrópodos/anatomía & histología , Artrópodos/química , Dípteros/anatomía & histología , Dípteros/química , Fósiles , Pigmentos Biológicos/análisis , Pigmentos Biológicos/química , Animales , Biomarcadores/análisis , Biomarcadores/química , Femenino , Pinzones , Masculino , Melaninas/análisis , Melaninas/química , Óptica y Fotónica
2.
Nature ; 564(7736): 359-365, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518862

RESUMEN

Ichthyosaurs are extinct marine reptiles that display a notable external similarity to modern toothed whales. Here we show that this resemblance is more than skin deep. We apply a multidisciplinary experimental approach to characterize the cellular and molecular composition of integumental tissues in an exceptionally preserved specimen of the Early Jurassic ichthyosaur Stenopterygius. Our analyses recovered still-flexible remnants of the original scaleless skin, which comprises morphologically distinct epidermal and dermal layers. These are underlain by insulating blubber that would have augmented streamlining, buoyancy and homeothermy. Additionally, we identify endogenous proteinaceous and lipid constituents, together with keratinocytes and branched melanophores that contain eumelanin pigment. Distributional variation of melanophores across the body suggests countershading, possibly enhanced by physiological adjustments of colour to enable photoprotection, concealment and/or thermoregulation. Convergence of ichthyosaurs with extant marine amniotes thus extends to the ultrastructural and molecular levels, reflecting the omnipresent constraints of their shared adaptation to pelagic life.


Asunto(s)
Evolución Biológica , Regulación de la Temperatura Corporal , Dinosaurios/anatomía & histología , Dinosaurios/fisiología , Fósiles , Homeostasis , Adaptación Fisiológica , Tejido Adiposo/anatomía & histología , Tejido Adiposo/química , Animales , Dermis/anatomía & histología , Dermis/química , Delfines , Epidermis/anatomía & histología , Epidermis/química , Femenino , Queratinocitos/química , Lípidos/análisis , Masculino , Melaninas/análisis , Melanóforos/química , Marsopas , Proteínas/análisis
3.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36430276

RESUMEN

The crucial barrier properties of the stratum corneum (SC) depend critically on the design and integrity of its layered molecular structure. However, analysis methods capable of spatially resolved molecular characterization of the SC are scarce and fraught with severe limitations, e.g., regarding molecular specificity or spatial resolution. Here, we used 3D time-of-flight secondary ion mass spectrometry to characterize the spatial distribution of skin lipids in corneocyte multilayer squams obtained by tape stripping. Depth profiles of specific skin lipids display an oscillatory behavior that is consistent with successive monitoring of individual lipid and corneocyte layers of the SC structure. Whereas the most common skin lipids, i.e., ceramides, C24:0 and C26:0 fatty acids and cholesteryl sulfate, are similarly organized, a distinct 3D distribution was observed for cholesteryl oleate, suggesting a different localization of cholesteryl esters compared to the lipid matrix separating the corneocyte layers. The possibility to monitor the composition and spatial distribution of endogenous lipids as well as active drug and cosmetic substances in individual lipid and corneocyte layers has the potential to provide important contributions to the basic understanding of barrier function and penetration in the SC.


Asunto(s)
Ésteres del Colesterol , Epidermis , Piel , Espectrometría de Masa de Ion Secundario , Imagen Molecular
4.
Circulation ; 142(8): 776-789, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32506925

RESUMEN

BACKGROUND: Aortic valve stenosis (AVS), which is the most common valvular heart disease, causes a progressive narrowing of the aortic valve as a consequence of thickening and calcification of the aortic valve leaflets. The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in cardiovascular prevention have recently been demonstrated in a large randomized, controlled trial. In addition, n-3 PUFAs serve as the substrate for the synthesis of specialized proresolving mediators, which are known by their potent beneficial anti-inflammatory, proresolving, and tissue-modifying properties in cardiovascular disease. However, the effects of n-3 PUFA and specialized proresolving mediators on AVS have not yet been determined. The aim of this study was to identify the role of n-3 PUFA-derived specialized proresolving mediators in relation to the development of AVS. METHODS: Lipidomic and transcriptomic analyses were performed in human tricuspid aortic valves. Apoe-/- mice and wire injury in C57BL/6J mice were used as models for mechanistic studies. RESULTS: We found that n-3 PUFA incorporation into human stenotic aortic valves was higher in noncalcified regions compared with calcified regions. Liquid chromatography tandem mass spectrometry-based lipid mediator lipidomics identified that the n-3 PUFA-derived specialized proresolving mediator resolvin E1 was dysregulated in calcified regions and acted as a calcification inhibitor. Apoe-/- mice expressing the Caenorhabditis elegans Fat-1 transgene (Fat-1tg×Apoe-/-), which enables the endogenous synthesis of n-3 PUFA and increased valvular n-3 PUFA content, exhibited reduced valve calcification, lower aortic valve leaflet area, increased M2 macrophage polarization, and improved echocardiographic parameters. Finally, abrogation of the resolvin E1 receptor ChemR23 enhanced disease progression, and the beneficial effects of Fat-1tg were abolished in the absence of ChemR23. CONCLUSIONS: n-3 PUFA-derived resolvin E1 and its receptor ChemR23 emerge as a key axis in the inhibition of AVS progression and may represent a novel potential therapeutic opportunity to be evaluated in patients with AVS.


Asunto(s)
Enfermedad de la Válvula Aórtica/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Receptores de Quimiocina/metabolismo , Transducción de Señal , Animales , Enfermedad de la Válvula Aórtica/genética , Ácido Eicosapentaenoico/genética , Ácido Eicosapentaenoico/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados para ApoE , Receptores de Quimiocina/genética
5.
Nature ; 506(7489): 484-8, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24402224

RESUMEN

Throughout the animal kingdom, adaptive colouration serves critical functions ranging from inconspicuous camouflage to ostentatious sexual display, and can provide important information about the environment and biology of a particular organism. The most ubiquitous and abundant pigment, melanin, also has a diverse range of non-visual roles, including thermoregulation in ectotherms. However, little is known about the functional evolution of this important biochrome through deep time, owing to our limited ability to unambiguously identify traces of it in the fossil record. Here we present direct chemical evidence of pigmentation in fossilized skin, from three distantly related marine reptiles: a leatherback turtle, a mosasaur and an ichthyosaur. We demonstrate that dark traces of soft tissue in these fossils are dominated by molecularly preserved eumelanin, in intimate association with fossilized melanosomes. In addition, we suggest that contrary to the countershading of many pelagic animals, at least some ichthyosaurs were uniformly dark-coloured in life. Our analyses expand current knowledge of pigmentation in fossil integument beyond that of feathers, allowing for the reconstruction of colour over much greater ranges of extinct taxa and anatomy. In turn, our results provide evidence of convergent melanism in three disparate lineages of secondarily aquatic tetrapods. Based on extant marine analogues, we propose that the benefits of thermoregulation and/or crypsis are likely to have contributed to this melanisation, with the former having implications for the ability of each group to exploit cold environments.


Asunto(s)
Organismos Acuáticos/fisiología , Evolución Biológica , Extinción Biológica , Fósiles , Melanosis/metabolismo , Reptiles/fisiología , Pigmentación de la Piel , Animales , Regulación de la Temperatura Corporal , Color , Melaninas/análisis , Melanosomas/química , Filogenia , Piel/química , Tortugas/fisiología
6.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375233

RESUMEN

Residual melanins have been detected in multimillion-year-old animal body fossils; however, confident identification and characterization of these natural pigments remain challenging due to loss of chemical signatures during diagenesis. Here, we simulate this post-burial process through artificial maturation experiments using three synthetic and one natural eumelanin exposed to mild (100 °C/100 bar) and harsh (250 °C/200 bar) environmental conditions, followed by chemical analysis employing alkaline hydrogen peroxide oxidation (AHPO) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Our results show that AHPO is sensitive to changes in the melanin molecular structure already during mild heat and pressure treatment (resulting, e.g., in increased C-C cross-linking), whereas harsh maturation leads to extensive loss of eumelanin-specific chemical markers. In contrast, negative-ion ToF-SIMS spectra are considerably less affected by mild maturation conditions, and eumelanin-specific features remain even after harsh treatment. Detailed analysis of ToF-SIMS spectra acquired prior to experimental treatment revealed significant differences between the investigated eumelanins. However, systematic spectral changes upon maturation reduced these dissimilarities, indicating that intense heat and pressure treatment leads to the formation of a common, partially degraded, eumelanin molecular structure. Our findings elucidate the complementary nature of AHPO and ToF-SIMS during chemical characterization of eumelanin traces in fossilized organismal remains.


Asunto(s)
Biomarcadores/análisis , Cromatografía Líquida de Alta Presión/métodos , Fósiles , Melaninas/análisis , Melaninas/química , Peróxidos/química , Espectrometría de Masa de Ion Secundario/métodos , Animales , Oxidación-Reducción , Pigmentación
7.
Anal Chem ; 90(21): 13065-13072, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30350611

RESUMEN

Over the last two decades, supported lipid bilayers (SLBs) have been extensively used as model systems to study cell membrane structure and function. While SLBs have been traditionally produced from simple lipid mixtures, there has been a recent surge in compositional complexity to better mimic cellular membranes and thereby bridge the gap between classic biophysical approaches and cell experiments. To this end, native cellular membrane derived SLBs (nSLBs) have emerged as a new category of SLBs. As a new type of biomimetic material, an analytical workflow must be designed to characterize its molecular composition and structure. Herein, we demonstrate how a combination of fluorescence microscopy, neutron reflectometry, and secondary ion mass spectrometry offers new insights on structure, composition, and quality of nSLB systems formed using so-called hybrid vesicles, which are a mixture of native membrane material and synthetic lipids. With this approach, we demonstrate that the nSLB formed a continuous structure with complete mixing of the synthetic and native membrane components and a molecular stoichiometry that essentially mirrors that of the hybrid vesicles. Furthermore, structural investigation of the nSLB revealed that PEGylated lipids do not significantly thicken the hydration layer between the bilayer and substrate when on silicon substrates; however, nSLBs do have more topology than their simpler, purely synthetic counterparts. Beyond new insights regarding the structure and composition of nSLB systems, this work also serves to guide future researchers in producing and characterizing nSLBs from their cellular membrane of choice.


Asunto(s)
Materiales Biomiméticos/química , Glicerofosfolípidos/química , Membrana Dobles de Lípidos/química , Polietilenglicoles/química , Animales , Membrana Celular/química , Microscopía Fluorescente/métodos , Difracción de Neutrones/métodos , Espectrometría de Masa de Ion Secundario/métodos , Spodoptera/química
8.
J Neurochem ; 138(3): 469-78, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27115712

RESUMEN

The pathological mechanisms underlying Alzheimer's disease (AD) are still not understood. The disease pathology is characterized by the accumulation and aggregation of amyloid-ß (Aß) peptides into extracellular plaques, however the factors that promote neurotoxic Aß aggregation remain elusive. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides and proteins in biological tissues. In the present study, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS)-based imaging was used to study Aß deposition in transgenic mouse brain tissue and to elucidate the plaque-associated chemical microenvironment. The imaging experiments were performed in brain sections of transgenic Alzheimer's disease mice carrying the Arctic and Swedish mutation of amyloid-beta precursor protein (tgArcSwe). Multivariate image analysis was used to interrogate the IMS data for identifying pathologically relevant, anatomical features based on their chemical identity. This include cortical and hippocampal Aß deposits, whose amyloid peptide content was further verified using immunohistochemistry and laser microdissection followed by MALDI MS analysis. Subsequent statistical analysis on spectral data of regions of interest revealed brain region-specific differences in Aß peptide aggregation. Moreover, other plaque-associated protein species were identified including macrophage migration inhibitory factor suggesting neuroinflammatory processes and glial cell reactivity to be involved in AD pathology. The presented data further highlight the potential of IMS as a powerful approach in neuropathology. Hanrieder et al. described an imaging mass spectrometry based study on comprehensive spatial profiling of C-terminally truncated Aß species within individual plaques in tgArcSwe mice. Here, brain region-dependent differences in Aß truncation and other plaque-associated proteins, such as macrophage migration inhibitory factor, were observed. The data shed further light on plaque-associated molecular mechanisms implicated in Alzheimer's pathogenesis. Cover image for this issue: doi: 10.1111/jnc.13328.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones Transgénicos , Placa Amiloide/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
9.
Am J Pathol ; 185(5): 1216-33, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25805604

RESUMEN

The accurate spatial distribution of various lipid species during atherogenesis has remained unexplored. Herein, we used time-of-flight secondary ion mass spectrometry (TOF-SIMS) to analyze the lipid distribution in human coronary artery cryosections. The images from the TOF-SIMS allowed visualization of ions derived from individual species of cholesterol esters, phospholipids, and triacylglycerols in the context of lesion characteristics and severity. In addition, cholesterol-containing crystal-like structures were seen in high-resolution images of advanced lesions. The ratio of cholesterol fragment ions (m/z 385:m/z 369) was found to differentiate unesterified cholesterol from cholesterol esters. This ratio changed during atherogenesis and in different areas of the lesions, reflecting differences in the accumulation of the two forms of cholesterol. Thus, atheromas were characterized by accumulation of cholesterol esters with apolipoprotein B near the intima-media border, whereas in the complicated lesions, unesterified cholesterol dominated in neovessel-containing areas enriched in glycophorin A. Interestingly, triacylglycerols were found in areas surrounding neovessels and lacking either form of cholesterol. The lipid composition of the tunica media reflected the alterations observed in the intimal lipids, yet being more subtle. The detailed molecular information obtained by TOF-SIMS revealed unanticipated differences in the type and composition of the accumulating lipids in different stages of atherogenesis, notably the spatial segregation of cholesterol and triglycerides in the advancing lesions.


Asunto(s)
Enfermedad de la Arteria Coronaria/patología , Lípidos/análisis , Espectrometría de Masa de Ion Secundario/métodos , Humanos , Inmunohistoquímica
10.
Proc Biol Sci ; 282(1813): 20150614, 2015 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-26290071

RESUMEN

Colour, derived primarily from melanin and/or carotenoid pigments, is integral to many aspects of behaviour in living vertebrates, including social signalling, sexual display and crypsis. Thus, identifying biochromes in extinct animals can shed light on the acquisition and evolution of these biological traits. Both eumelanin and melanin-containing cellular organelles (melanosomes) are preserved in fossils, but recognizing traces of ancient melanin-based coloration is fraught with interpretative ambiguity, especially when observations are based on morphological evidence alone. Assigning microbodies (or, more often reported, their 'mouldic impressions') as melanosome traces without adequately excluding a bacterial origin is also problematic because microbes are pervasive and intimately involved in organismal degradation. Additionally, some forms synthesize melanin. In this review, we survey both vertebrate and microbial melanization, and explore the conflicts influencing assessment of microbodies preserved in association with ancient animal soft tissues. We discuss the types of data used to interpret fossil melanosomes and evaluate whether these are sufficient for definitive diagnosis. Finally, we outline an integrated morphological and geochemical approach for detecting endogenous pigment remains and associated microstructures in multimillion-year-old fossils.


Asunto(s)
Evolución Biológica , Fósiles , Melaninas/química , Microcuerpos/química , Pigmentación , Vertebrados/fisiología , Animales , Melanosomas/fisiología
11.
Anal Bioanal Chem ; 407(17): 5101-11, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25694146

RESUMEN

Dietary intake of omega-3 fatty acids is associated with considerable health benefits, including the prevention of metabolic disorders such as cardiovascular disease and type 2 diabetes. Furthermore, incorporation of the main omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), at the systemic level has been found to be more efficient when these fatty acids are supplied in the form of marine phospholipids compared to triglycerides. In this work, the uptake of omega-3 fatty acids and their incorporation in specific lipids were studied in adipose, skeletal muscle, and liver tissues of mice given high-fat diets with or without omega-3 supplements in the form of phospholipids or triglycerides using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results demonstrate significant uptake of EPA and DHA, and the incorporation of these fatty acids in specific lipid molecules, in all three tissue types in response to the dietary omega-3 supplements. Moreover, the results indicate reduced concentrations of arachidonic acid (AA) and depletion of lipids containing AA in tissue samples from mice given supplementary omega-3, as compared to the control mice. The effect on the lipid composition, in particular the DHA uptake and AA depletion, was found to be significantly stronger when the omega-3 supplement was supplied in the form of phospholipids, as compared to triglycerides. TOF-SIMS was found to be a useful technique for screening the lipid composition and simultaneously obtaining the spatial distributions of various lipid classes on tissue surfaces.


Asunto(s)
Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-3/metabolismo , Espectrometría de Masa de Ion Secundario/métodos , Tejido Adiposo/química , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa , Hígado/química , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/química , Músculo Esquelético/metabolismo
12.
J Am Chem Soc ; 136(28): 9973-81, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-24941267

RESUMEN

The spatial localization of amyloid-ß peptide deposits, the major component of senile plaques in Alzheimer's disease (AD), was mapped in transgenic AD mouse brains using time-of-flight secondary ion mass spectrometry (ToF-SIMS), simultaneously with several endogenous molecules that cannot be mapped using conventional immunohistochemistry imaging, including phospholipids, cholesterol and sulfatides. Whereas the endogenous lipids were detected directly, the amyloid-ß deposits, which cannot be detected as intact entities with ToF-SIMS because of extensive ion-induced fragmentation, were identified by specific binding of deuterated liposomes to antibodies directed against amyloid-ß. Comparative investigation of the amyloid-ß deposits using conventional immunohistochemistry and fluorescence microscopy suggests similar sensitivity but a more surface-confined identification due to the shallow penetration depth of the ToF-SIMS signal. The recorded ToF-SIMS images thus display the localization of lipids and amyloid-ß in a narrow (~10 nm) two-dimensional plane at the tissue surface. As compared to a frozen nontreated tissue sample, the liposome preparation protocol generally increased the signal intensity of endogenous lipids, likely caused by matrix effects associated with the removal of salts, but no severe effects on the tissue integrity and the spatial distribution of lipids were observed with ToF-SIMS or scanning electron microscopy (SEM). This method may provide an important extension to conventional tissue imaging techniques to investigate the complex interplay of different kinds of molecules in neurodegenerative diseases, in the same specimen. However, limitations in target accessibility of the liposomes as well as unspecific binding need further consideration.


Asunto(s)
Péptidos beta-Amiloides/química , Anticuerpos/química , Encéfalo/ultraestructura , Lípidos/química , Liposomas/química , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/inmunología , Animales , Humanos , Espectrometría de Masas , Ratones , Ratones Transgénicos , Microscopía Electrónica de Rastreo , Espectrometría de Masa de Ion Secundario
13.
Anal Chem ; 86(7): 3443-52, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24568123

RESUMEN

In the development of topical drugs intended for local effects in the skin, one of the major challenges is to achieve drug penetration through the external barrier of the skin, stratum corneum, and secure exposure to the viable skin layers. Mass spectrometric imaging offers an opportunity to study drug penetration in a variety of skin models by mapping the spatial distribution in different skin layers after topical application of the drug. In this study, we used time-of-flight secondary ion mass spectrometry (TOF-SIMS) and scanning electron microscopy (SEM) to image the distribution of three drug molecules in skin tissue cross sections of inflamed mouse ear. The three compounds, roflumilast, tofacitinib, and ruxolitinib, were topically administered to the mouse ears, which were subsequently cryosectioned and thawed for the analyses. The results reveal that the combination of TOF-SIMS and SEM was beneficial for interpretation of drug distribution. SEM identified the different skin layers, while spatial distributions of all three compounds could be visualized by TOF-SIMS, showing that the drug was primarily distributed into, or on the top of, the stratum corneum. Imaging of endogenous skin components like cholesterol, phospholipids, ceramides, and free fatty acids showed distributions in good agreement with the literature. One limitation of the TOF-SIMS method is sensitivity, typically allowing for analysis in the millimolar range rather than the pharmacologically relevant micromolar range. However, the data presented demonstrate the potential of the technique for studying the penetration of drugs with different physicochemical properties in skin.


Asunto(s)
Microscopía Electrónica de Rastreo/métodos , Farmacocinética , Piel/metabolismo , Espectrometría de Masa de Ion Secundario/métodos , Administración Tópica , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Piel/ultraestructura
14.
Sci Rep ; 14(1): 18681, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134579

RESUMEN

The interaction of active substances with molecular structures in stratum corneum (SC) is crucial for the efficacy and safety of cosmetic formulations and topical drugs. However, the molecular architecture of SC is highly complex and methods to unambiguously localize exogenous molecules within SC are lacking. Consequently, little is known about the distribution of actives within SC, and proposed penetration mechanisms through SC are typically limited to simple diffusion via a tortuous (lipid only) or transverse (across corneocytes and lipid matrix) pathway. In this work, 3D mass spectrometry imaging is used to determine the spatial distributions of four active substances at subcellular resolution in SC, including partitioning between the corneocytes and the intercellular lipid matrix. The results indicate that caffeine, 2-methyl resorcinol and oxybenzone are homogeneously distributed in the corneocytes but largely absent in the lipid matrix, despite considerable differences in lipophilicity. In contrast, the distribution- of jasmonic acid derivative is more inhomogeneous and indicates considerable localization to both the lipid phase and the corneocytes.


Asunto(s)
Epidermis , Epidermis/metabolismo , Lípidos/química , Lípidos/análisis , Humanos , Cafeína/metabolismo , Animales , Benzofenonas/metabolismo , Resorcinoles/metabolismo , Resorcinoles/farmacología , Espectrometría de Masas
15.
Acta Neuropathol ; 125(1): 145-57, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22996963

RESUMEN

The spatial distributions of lipids, amyloid-beta deposits, markers of neurons and glial cells were imaged, at submicrometer lateral resolution, in brain structures of a mouse model of Alzheimer's disease using a new methodology that combines time-of-flight secondary ion mass spectrometry (ToF-SIMS) and confocal fluorescence microscopy. The technology, which enabled us to simultaneously image the lipid and glial cell distributions in Tg2576 mouse brain structures, revealed micrometer-sized cholesterol accumulations in hippocampal regions undergoing amyloid-beta deposition. Such cholesterol granules were either associated with individual amyloid deposits or spread over entire regions undergoing amyloidogenesis. Subsequent immunohistochemical analysis of the same brain regions showed increased microglial and astrocytic immunoreactivity associated with the amyloid deposits, as expected from previous studies, but did not reveal any particular astrocytic or microglial feature correlated with cholesterol granulation. However, dystrophic neurites as well as presynaptic vesicles presented a distribution similar to that of cholesterol granules in regions undergoing amyloid-beta accumulation, thus indicating that these neuronal endpoints may retain cholesterol in areas with lesions. In conclusion, the present study provides evidence for an altered cholesterol distribution near amyloid deposits that would have been missed by several other lipid analysis methods, and opens for the possibility to study in detail the putative liaison between lipid environment and protein structure and function in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Neuroglía/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente/métodos , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Espectrometría de Masa de Ion Secundario/métodos
16.
Rapid Commun Mass Spectrom ; 27(5): 565-81, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23413216

RESUMEN

RATIONALE: Over the last decade, the high lateral resolution and imaging capabilities of time-of-flight secondary ion mass spectrometry (ToF-SIMS) have increasingly stimulated interest in studying organic molecules in complex environmental materials. However, unlike with the established mass spectrometric techniques, the use of ToF-SIMS in the biogeosciences is still hampered by a lack of reference spectra of the relevant biomarker compounds. Here we present and interpret ToF-SIMS reference spectra of ten different cyclic lipids that are frequently used as biological tracers in ecological, organic geochemical and geobiological studies. METHODS: Standard compounds of α,ß,ß-(20R,24S)-24-methylcholestane, (22E)-ergosta-5,7,22-trien-3ß-ol, 17α(H),21ß-(H)-30-norhopane, hope-17(21)-ene, hop-22(29)-ene, 17ß(H),21ß(H)-bacteriohopane-32,33,34,35-tetrol, 17ß(H),21ß(H)-35-aminobacteriohopane-32,33,34-triol, α-tocopherol, ß,ß-carotene, chlorophyll a, and cryosections of microbial mats and a fungus were analyzed using a ToF-SIMS instrument equipped with a Bi(3)(+) cluster ion source. RESULTS: The spectra obtained from the standard compounds showed peaks in the molecular weight range (molecular ions, protonated and deprotonated molecules, adduct ions) and diagnostic fragment ion peaks in both, positive and negative ion modes. For the cyclic hydrocarbons, however, the positive ion mode spectra typically showed more and stronger characteristic peaks than the negative ion mode spectra. Using real world samples the capability of ToF-SIMS to detect and image selected compounds in complex organic matrices was tested. 17ß(H),21ß(H)-35-Aminobacteriohopane-32,33,34-triol, carotene and chlorophyll a were successfully identified in cryosections of microbial mats, and the distribution of ergosterol was mapped at µm resolution in a cryosection of a fungus (Tuber uncinatum). CONCLUSIONS: This study further highlights the utility of ToF-SIMS for the identification and localization of lipids within environmental samples and as a technique for biomarker-related research in organic geochemistry and geobiology.


Asunto(s)
Lípidos/análisis , Lípidos/química , Espectrometría de Masa de Ion Secundario/métodos , Ascomicetos/química , Bacterias/química , Biomarcadores/análisis , Biomarcadores/química , Carotenoides/química , Clorofila/química , Clorofila A , Ergosterol/análogos & derivados , Ergosterol/química , Hongos/química , Consorcios Microbianos , Peso Molecular , Terpenos/química
17.
Respiration ; 86(2): 135-42, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23816544

RESUMEN

BACKGROUND: Smoking, along with many respiratory diseases, has been shown to induce airway inflammation and alter the composition of the respiratory tract lining fluid (RTLF). We have previously shown that the phospholipid and protein composition of particles in exhaled air (PEx) reflects that of RTLF. In this study, we hypothesized that the composition of PEx differs between smokers and non-smokers, reflecting inflammation in the airways. OBJECTIVE: It was the aim of this study to identify differences in the phospholipid composition of PEx from smokers and non-smokers. METHODS: PEx from 12 smokers and 13 non-smokers was collected using a system developed in-house. PEx was analysed using time-of-flight secondary ion mass spectrometry, and the mass spectral data were evaluated using multivariate analysis. Orthogonal partial least squares (OPLS) was used to relate smoking status, lung function and pack years to the chemical composition of RTLF. The discriminating ions identified by OPLS were then used as explanatory variables in traditional regression analysis. RESULTS: There was a clear discrimination between smokers and non-smokers according to the chemical composition, where phospholipids from smokers were protonated and sodiated to a larger extent. Poor lung function showed a strong association with higher response from all molecular phosphatidylcholine species in the samples. Furthermore, the accumulated amount of tobacco consumed was associated with variations in mass spectra, indicating a dose-response relationship. CONCLUSION: The chemical composition of PEx differs between smokers and non-smokers, reflecting differences in the RTLF. The results from this study may suggest that the composition of RTLF is affected by smoking and may be of importance for lung function.


Asunto(s)
Aire/análisis , Pruebas Respiratorias/métodos , Óxido Nítrico/análisis , Fumar/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Espiración , Femenino , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Análisis Multivariante
18.
Nat Commun ; 14(1): 5651, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803012

RESUMEN

Melanin pigments play a critical role in physiological processes and shaping animal behaviour. Fossil melanin is a unique resource for understanding the functional evolution of melanin but the impact of fossilisation on molecular signatures for eumelanin and, especially, phaeomelanin is not fully understood. Here we present a model for the chemical taphonomy of fossil eumelanin and phaeomelanin based on thermal maturation experiments using feathers from extant birds. Our results reveal which molecular signatures are authentic signals for thermally matured eumelanin and phaeomelanin, which signatures are artefacts derived from the maturation of non-melanin molecules, and how these chemical data are impacted by sample preparation. Our model correctly predicts the molecular composition of eumelanins in diverse vertebrate fossils from the Miocene and Cretaceous and, critically, identifies direct molecular evidence for phaeomelanin in these fossils. This taphonomic framework adds to the geochemical toolbox that underpins reconstructions of melanin evolution and of melanin-based coloration in fossil vertebrates.


Asunto(s)
Fósiles , Melaninas , Animales , Melaninas/química , Pigmentación , Vertebrados , Plumas
19.
Biology (Basel) ; 11(3)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35336769

RESUMEN

Marine sediments of the lowermost Eocene Stolleklint Clay and Fur Formation of north-western Denmark have yielded abundant well-preserved insects. However, despite a long history of research, in-depth information pertaining to preservational modes and taphonomic pathways of these exceptional animal fossils remains scarce. In this paper, we use a combination of scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to assess the ultrastructural and molecular composition of three insect fossils: a wasp (Hymenoptera), a damselfly (Odonata) and a pair of beetle elytra (Coleoptera). Our analyses show that all specimens are preserved as organic remnants that originate from the exoskeleton, with the elytra displaying a greater level of morphological fidelity than the other fossils. TEM analysis of the elytra revealed minute features, including a multilayered epicuticle comparable to those nanostructures that generate metallic colors in modern insects. Additionally, ToF-SIMS analyses provided spectral evidence for chemical residues of the pigment eumelanin as part of the cuticular remains. To the best of our knowledge, this is the first occasion where both structural colors and chemical traces of an endogenous pigment have been documented in a single fossil specimen. Overall, our results provide novel insights into the nature of insect body fossils and additionally shed light on exceptionally preserved terrestrial insect faunas found in marine paleoenvironments.

20.
Sci Rep ; 12(1): 22655, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36587051

RESUMEN

The transition from terrestrial to marine environments by secondarily aquatic tetrapods necessitates a suite of adaptive changes associated with life in the sea, e.g., the scaleless skin in adult individuals of the extant leatherback turtle. A partial, yet exceptionally preserved hard-shelled (Pan-Cheloniidae) sea turtle with extensive soft-tissue remains, including epidermal scutes and a virtually complete flipper outline, was recently recovered from the Eocene Fur Formation of Denmark. Examination of the fossilized limb tissue revealed an originally soft, wrinkly skin devoid of scales, together with organic residues that contain remnant eumelanin pigment and inferred epidermal transformation products. Notably, this stem cheloniid-unlike its scaly living descendants-combined scaleless limbs with a bony carapace covered in scutes. Our findings show that the adaptive transition to neritic waters by the ancestral pan-chelonioids was more complex than hitherto appreciated, and included at least one evolutionary lineage with a mosaic of integumental features not seen in any living turtle.


Asunto(s)
Tortugas , Animales , Piel , Reptiles , Evolución Biológica , Epidermis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA