Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 660-667, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29246447

RESUMEN

Activated factor (F) VII is a vitamin K-dependent glycoprotein that initiates blood coagulation upon interaction with tissue factor. FVII deficiency is the most common of the rare congenital bleeding disorders. While the mutational pattern has been extensively characterized, the pathogenic molecular mechanisms of mutations, particularly at the intracellular level, have been poorly defined. Here, we aimed at elucidating the mechanisms underlying altered FVII biosynthesis in the presence of three mutation types in the catalytic domain: a missense change, a microdeletion and a frameshift/elongation, associated with severe or moderate to severe phenotypes. Using CHO-K1 cells transiently transfected with expression vectors containing the wild-type FVII cDNA (FVIIwt) or harboring the p.I289del, p.G420V or p.A354V-p.P464Hfs mutations, we found that the secretion of the FVII mutants was severely decreased compared to FVIIwt. The synthesis rate of the mutants was slower than the FVIIwt and delayed, and no degradation of the FVII mutants by proteasomes, lysosomes or cysteine proteases was observed. Confocal immunofluorescence microscopy studies showed that FVII variants were localized into the endoplasmic reticulum (ER) but were not detectable within the Golgi apparatus. These findings suggested that a common pathogenic mechanism, possibly a defective folding of the mutant proteins, was triggered by the FVII mutations. The misfolded state led to impaired trafficking of these proteins causing ER retention, which would explain the low to very low FVII plasma levels observed in patients carrying these mutations.


Asunto(s)
Dominio Catalítico/genética , Deficiencia del Factor VII/genética , Factor VII/química , Factor VII/genética , Mutación Missense , Sustitución de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Retículo Endoplásmico/metabolismo , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Pliegue de Proteína , Transporte de Proteínas/genética , Transducción de Señal/genética
2.
Biol Res ; 51(1): 3, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29316982

RESUMEN

BACKGROUND: The WNT pathway regulates intestinal stem cells and is frequently disrupted in intestinal adenomas. The pathway contains several potential biotargets for interference, including the poly-ADP ribosyltransferase enzymes tankyrase1 and 2. LGR5 is a known WNT pathway target gene and marker of intestinal stem cells. The LGR5+ stem cells are located in the crypt base and capable of regenerating all intestinal epithelial cell lineages. RESULTS: We treated Lgr5-EGFP-Ires-CreERT2;R26R-Confetti mice with the tankyrase inhibitor G007-LK for up to 3 weeks to assess the effect on duodenal stem cell homeostasis and on the integrity of intestinal epithelium. At the administered doses, G007-LK treatment inhibited WNT signalling in LGR5+ stem cells and reduced the number and distribution of cells traced from duodenal LGR5+ stem cells. However, the gross morphology of the duodenum remained unaltered and G007-LK-treated mice showed no signs of weight loss or any other visible morphological changes. The inhibitory effect on LGR5+ stem cell proliferation was reversible. CONCLUSION: We show that the tankyrase inhibitor G007-LK is well tolerated by the mice, although proliferation of the LGR5+ intestinal stem cells was inhibited. Our observations suggest the presence of a tankyrase inhibitor-resistant cell population in the duodenum, able to rescue tissue integrity in the presence of G007-LK-mediated inhibition of the WNT signalling dependent LGR5+ intestinal epithelial stem cells.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Duodeno/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Células Madre/efectos de los fármacos , Sulfonas/farmacología , Tanquirasas/antagonistas & inhibidores , Triazoles/farmacología , Animales , Duodeno/citología , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Receptores Acoplados a Proteínas G/genética , Sulfonas/farmacocinética , Tanquirasas/farmacocinética , Tanquirasas/farmacología , Triazoles/farmacocinética
3.
Angew Chem Int Ed Engl ; 54(16): 4885-9, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25663536

RESUMEN

Photochemical internalization (PCI) has shown great promise as a therapeutic alternative for targeted drug delivery by light-harnessed activation. However, it has only been applicable to therapeutic macromolecules or medium-sized molecules. Herein we describe the use of an amphiphilic, water-soluble porphyrin-ß-cyclodextrin conjugate (mTHPP-ßCD) as a "Trojan horse" to facilitate the endocytosis of CD-guest tamoxifens into breast-cancer cells. Upon irradiation, the porphyrin core of mTHPP-ßCD expedited endosomal membrane rupture and tamoxifen release into the cytosol, as documented by confocal microscopy. The sustained complexation of mTHPP-ßCD with tamoxifen was corroborated by 2D NMR spectroscopy and FRET studies. Following the application of PCI protocols with 4-hydroxytamoxifen (4-OHT), estrogen-receptor ß-positive (Erß+, but not ERß-) cell groups exhibited extensive cytotoxicity and/or growth suspension even at 72 h after irradiation.


Asunto(s)
Portadores de Fármacos/química , Nanoconjugados/química , Tamoxifeno/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Humanos , Luz , Células MCF-7 , Espectroscopía de Resonancia Magnética , Microscopía Confocal , Porfirinas/química , Tamoxifeno/toxicidad , beta-Ciclodextrinas/química
4.
Traffic ; 13(11): 1547-63, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22816767

RESUMEN

Phosphatidylinositol 3-phosphate (PtdIns3P) orchestrates endosomal cargo transport, fusion and motility by recruiting FYVE or PX domain-containing effector proteins to endosomal membranes. In an attempt to discover novel PtdIns3P effectors involved in the termination of growth factor receptor signalling, we performed an siRNA screen for epidermal growth factor (EGF) degradation, targeting FYVE and PX domain proteins in the human proteome. This screen identified several potential regulators of EGF degradation, including HRS (used as positive control), PX kinase, MTMR4 and Phafin2/PLEKHF2. As Phafin2 has not previously been shown to be required for EGF receptor (EGFR) degradation, we performed further functional studies on this protein. Loss of Phafin2 was found to decrease early endosome size, whereas overexpression of Phafin2 resulted in enlarged endosomes. Moreover, both the EGFR and the fluid-phase marker dextran were retained in abnormally small endosomes in Phafin2-depleted cells. In yeast two-hybrid analysis we identified Phafin2 as a novel interactor of the endosomal-tethering protein EEA1, and Phafin2 colocalized strongly with EEA1 in microdomains of the endosome membrane. Our results suggest that Phafin2 controls receptor trafficking and fluid-phase transport through early endosomes by facilitating endosome fusion in concert with EEA1.


Asunto(s)
Endosomas/metabolismo , Receptores ErbB/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Endocitosis , Endosomas/ultraestructura , Factor de Crecimiento Epidérmico/metabolismo , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Tamaño de los Orgánulos , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteolisis , Proteoma/química , Proteoma/metabolismo , ARN Interferente Pequeño , Técnicas del Sistema de Dos Híbridos , Regulación hacia Arriba , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
5.
Biochim Biophys Acta ; 1830(8): 4235-43, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23643966

RESUMEN

BACKGROUND: The normal stem cell marker CD133 is also a putative marker of cancer stem cells (CSCs) in different types of cancers. Hence, a major challenge when targeting CD133-expressing CSCs is to prevent depletion of the normal stem cell pool. We hypothesized that the site-specific and light-controlled drug delivery method photochemical internalization (PCI) may have the potential to enhance selectivity and endosomal escape of CD133-targeting immunotoxins in stem-like sarcoma cells. METHODS: We have used a sarcoma model, SW872 cells isolated from xenografts harboring CSCs within a ~2% CD133(high) subpopulation to investigate the potential of PCI of CD133-targeting toxin as a novel strategy to kill CSCs. Model immunotoxins were generated by binding the ribosome-inactivating protein toxin saporin to each of the monoclonal antibodies CD133/1 (AC133) or CD133/2 (293C), specific for individual CD133-epitopes. Cellular targeting, intracellular co-localization with the PCI photosensitizer, disulfonated meso-tetraphenylchlorin (TPCS2a), and cytotoxic efficacy of PCI of the CD133-targeting toxins were evaluated. RESULTS: PCI of CD133-saporin efficiently targets CD133-expressing SW872 and HT1080 sarcoma cells and results in loss of cell viability. Following sub-toxic treatment, surviving SW872 cells, depleted of the CD133-expressing population, display reduced proliferative capacity and attenuated CSC properties, such as reduced colony-forming ability and tumorigenicity. CONCLUSION: Here we present a proof-of-concept study, where PCI enables light-triggered delivery of CD133-targeting antibody-drug conjugates, resulting in decreased sarcoma tumor-initiating capacity. GENERAL SIGNIFICANCE: PCI of CD133-targeting toxins may be used as a minimal invasive strategy in the treatment of sarcomas, and potentially as a therapeutic for other solid tumors expressing CD133.


Asunto(s)
Glicoproteínas/antagonistas & inhibidores , Inmunotoxinas/administración & dosificación , Células Madre Neoplásicas/efectos de los fármacos , Péptidos/antagonistas & inhibidores , Fármacos Fotosensibilizantes/administración & dosificación , Sarcoma/tratamiento farmacológico , Antígeno AC133 , Animales , Antígenos CD/inmunología , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Glicoproteínas/inmunología , Humanos , Ratones , Ratones SCID , Péptidos/inmunología , Fotoquímica , Sarcoma/patología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Cell Physiol ; 228(6): 1304-13, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23168795

RESUMEN

In this study, we report a novel role of FAK as a regulator of Cdk2 in anchorage-dependent primary cultured hepatocytes. In response to EGF, we found that S-phase entry was reduced upon FAK inhibition. This correlated with decreased protein expression and nuclear accumulation of the G1/S-phase regulator Cdk2. Further, nuclear accumulation of the Cdk2 partner cyclinE, was reduced, but not its protein level. Also, protein levels of Cdk2 were inversely linked with increased expression of the Cdk2 inhibitor p27, known to be degraded in a Cdk2-dependent manner. Also, cyclinD1 was regulated by FAK, but to a lesser extent than Cdk2. To assess the mechanism in which FAK mediates Cdk2-regulation, FAK mutants were used: FAKY397F, mutated at its integrin-regulated site, and two others mutated at docking sites for Grb2-ERK-activation (FAKY925F) and for p130Cas-Rac1-activation (FAKY861F). All three sites were central for EGF-induced ERK-activity and Cdk2 expression. In addition, FAK was important for HGF-mediated proliferation, suggesting a general mechanism for anchorage-dependent growth. Moreover, growth factor-induced cell spreading, but not survival, required FAK. Hence, integrins and growth factors cooperate in anchorage-dependent signaling events leading to proliferation and motility. In conclusion, our data suggest that FAK acts as a central coordinator of integrin and growth factor-mediated S-phase entry by its ability to regulate Cdk2.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Hepatocitos/enzimología , Transporte Activo de Núcleo Celular , Animales , Apoptosis , Adhesión Celular , Movimiento Celular , Proliferación Celular , Forma de la Célula , Células Cultivadas , Ciclina D1/metabolismo , Ciclina E/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/genética , Factor de Crecimiento de Hepatocito/metabolismo , Hepatocitos/efectos de los fármacos , Masculino , Mutagénesis Sitio-Dirigida , Mutación , Cultivo Primario de Células , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Ratas , Ratas Wistar , Puntos de Control de la Fase S del Ciclo Celular , Transducción de Señal , Transfección , Factor de Crecimiento Transformador beta1/metabolismo
7.
Cell Physiol Biochem ; 32(3): 511-22, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24008581

RESUMEN

BACKGROUND/AIMS: EGF receptor is a main participant in the regulation of liver regeneration. In primary hepatocyte cultures, EGF or TGFα binding to EGF receptor activates Erk1/2 and PI3K pathways, induces cyclin D1 and thus initiates DNA synthesis. We have explored mechanisms by which prolonged EGF receptor activation induces hepatocyte proliferation. METHODS: EGF receptor activation, as well as Erk1/2 and PI3K signaling were explored in EGF-stimulated primary hepatocyte cultures by Western blotting and immunocytochemistry. TGFα release to the medium was quantified by ELISA. Effects of a neutralizing antibody to TGFα on EGF receptor signaling and proliferation were explored. RESULTS: Inhibitors of PI3K or Erk1/2 inhibited cyclin D1 expression and G1 progression when added 12 hours after EGF stimulation, whereas depletion of EGF from the medium at this time point did not. ELISA demonstrated that EGF induced TGFα release to the medium. Cyclin D1 induction and cellular proliferation were efficiently inhibited when a neutralizing antibody to TGFα was added to the medium. This also occurred when the antibody was added 12 hours after EGF stimulation. CONCLUSION: Sustained EGF receptor activity and signaling through both Erk1/2 and PI3K pathways were necessary for proliferation. This was achieved by EGF activation of autocrine TGFα.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/metabolismo , Hepatocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador alfa/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Comunicación Autocrina/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cromonas/farmacología , Ciclina D1/metabolismo , Fase G1 , Hepatocitos/metabolismo , Masculino , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Factor de Crecimiento Transformador alfa/inmunología
8.
Cancer Rep (Hoboken) ; 5(12): e1278, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-32737955

RESUMEN

BACKGROUND: Photodynamic therapy (PDT) is a minimally invasive, clinically approved therapy with numerous advantages over other mainstream cancer therapies. 5-aminolevulinic acid (5-ALA)-PDT is of particular interest, as it uses the photosensitiser PpIX, naturally produced in the heme pathway, following 5-ALA administration. Even though 5-ALA-PDT shows high specificity to cancers, differences in treatment outcomes call for predictive biomarkers to better stratify patients and to also diversify 5-ALA-PDT based on each cancer's phenotypic and genotypic individualities. AIMS: The present study seeks to highlight key biomarkers that may predict treatment outcome and simultaneously be exploited to overcome cancer-specific resistances to 5-ALA-PDT. METHODS AND RESULTS: We submitted two glioblastoma (T98G and U87) and three breast cancer (MCF7, MDA-MB-231, and T47D) cell lines to 5-ALA-PDT. Glioblastoma cells were the most resilient to 5-ALA-PDT, while intracellular production of 5-ALA-derived protoporphyrin IX (PpIX) could not account for the recorded PDT responses. We identified the levels of expression of ABCG2 transporters, ferrochelatase (FECH), and heme oxygenase (HO-1) as predictive biomarkers for 5-ALA-PDT. GPX4 and GSTP1 expression vs intracellular glutathione (GSH) levels also showed potential as PDT biomarkers. For T98G cells, inhibition of ABCG2, FECH, HO-1, and/or intracellular GSH depletion led to profound PDT enhancement. Inhibition of ABCG2 in U87 cells was the only synergistic adjuvant to 5-ALA-PDT, rendering the otherwise resistant cell line fully responsive to 5-ALA-PDT. ABCG2 or FECH inhibition significantly enhanced 5-ALA-PDT-induced MCF7 cytotoxicity, while for MDA-MB-231, ABCG2 inhibition and intracellular GSH depletion conferred profound synergies. FECH inhibition was the only synergism to ALA-PDT for the most susceptible among the cell lines, T47D cells. CONCLUSION: This study demonstrates the heterogeneity in the cellular response to 5-ALA-PDT and identifies biomarkers that may be used to predict treatment outcome. The study also provides preliminary findings on the potential of inhibiting specific molecular targets to overcome inherent resistances to 5-ALA-PDT.


Asunto(s)
Glioblastoma , Fotoquimioterapia , Humanos , Ácido Aminolevulínico/farmacología , Fotoquimioterapia/métodos , Glioblastoma/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Biomarcadores
9.
Neurotoxicology ; 92: 33-48, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35835329

RESUMEN

Neural stem cells (NSCs) derived from human induced pluripotent stem cells were used to investigate effects of exposure to the food contaminant acrylamide (AA) and its main metabolite glycidamide (GA) on key neurodevelopmental processes. Diet is an important source of human AA exposure for pregnant women, and AA is known to pass the placenta and the newborn may also be exposed through breast feeding after birth. The NSCs were exposed to AA and GA (1 ×10-8 - 3 ×10-3 M) under 7 days of proliferation and up to 28 days of differentiation towards a mixed culture of neurons and astrocytes. Effects on cell viability was measured using Alamar Blue™ cell viability assay, alterations in gene expression were assessed using real time PCR and RNA sequencing, and protein levels were quantified using immunocytochemistry and high content imaging. Effects of AA and GA on neurodevelopmental processes were evaluated using endpoints linked to common key events identified in the existing developmental neurotoxicity adverse outcome pathways (AOPs). Our results suggest that AA and GA at low concentrations (1 ×10-7 - 1 ×10-8 M) increased cell viability and markers of proliferation both in proliferating NSCs (7 days) and in maturing neurons after 14-28 days of differentiation. IC50 for cell death of AA and GA was 5.2 × 10-3 M and 5.8 × 10-4 M, respectively, showing about ten times higher potency for GA. Increased expression of brain derived neurotrophic factor (BDNF) concomitant with decreased synaptogenesis were observed for GA exposure (10-7 M) only at later differentiation stages, and an increased number of astrocytes (up to 3-fold) at 14 and 21 days of differentiation. Also, AA exposure gave tendency towards decreased differentiation (increased percent Nestin positive cells). After 28 days, neurite branch points and number of neurites per neuron measured by microtubule-associated protein 2 (Map2) staining decreased, while the same neurite features measured by ßIII-Tubulin increased, indicating perturbation of neuronal differentiation and maturation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndromes de Neurotoxicidad , Acrilamida/toxicidad , Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo , Compuestos Epoxi , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Recién Nacido , Proteínas Asociadas a Microtúbulos , Nestina , Neuronas/metabolismo , Embarazo , Tubulina (Proteína)
10.
J Cell Physiol ; 226(9): 2267-78, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21660950

RESUMEN

Reactive oxygen species (ROS) function as signaling molecules mainly by reversible oxidation of redox-sensitive target proteins. ROS can be produced in response to integrin ligation and growth factor stimulation through Rac1 and its effector protein NADPH oxidase. One of the central roles of Rac1-NADPH oxidase is actin cytoskeletal rearrangement, which is essential for cell spreading and migration. Another important regulator of cell spread is focal adhesion kinase (FAK), a coordinator of integrin and growth factor signaling. Here, we propose a novel role for NADPH oxidase as a modulator of the FAK autophosphorylation site. We found that Rac1-NADPH oxidase enhanced the phosphorylation of FAK at Y397. This site regulates FAK's ability to act as a scaffold for EGF-mediated signaling, including activation of ERK. Accordingly, we found that EGF-induced activation of FAK at Y925, the following activation of ERK, and phosphorylation of FAK at the ERK-regulated S910-site depended upon NADPH oxidase. Furthermore, the inhibition of NADPH oxidase caused excessive focal adhesions, which is in accordance with ERK and FAK being modulators of focal adhesion dissociation. Our data suggest that Rac1 through NADPH oxidase is part of the signaling pathway constituted by FAK, Rac1, and ERK that regulates focal adhesion disassembly during cell spreading.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , NADPH Oxidasas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Activación Enzimática/efectos de los fármacos , Receptores ErbB/metabolismo , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/enzimología , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Masculino , Ratones , Modelos Biológicos , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Ratas , Ratas Wistar
11.
Thromb Haemost ; 121(12): 1588-1598, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33742435

RESUMEN

Clinical parameters have been extensively studied in factor (F) VII deficiency, but the knowledge of molecular mechanisms of this disease is scarce. We report on three probands with intracranial bleeds at an early age, one of which had concomitant high titer of FVII inhibitor. The aim of the present study was to identify the causative mutations and to elucidate the underlying molecular mechanisms. All nine F7 exons were sequenced in the probands and the closest family members. A homozygous deletion in exon 1, leading to a frame shift and generation of a premature stop codon (p.C10Pfs*16), was found in proband 1. Probands 2 and 3 (siblings) were homozygous for a missense mutation in exon 8, resulting in a glycine (G) to arginine (R) substitution at amino acid 240 (p.G240R). All probands had severely reduced FVII activity (FVII:C < 1 IU/dL). Treatment consisted of recombinant FVIIa and/or plasma concentrate, and proband 1 developed a FVII inhibitor shortly after initiation of treatment. The FVII variants were overexpressed in mammalian cell lines. No FVII protein was produced in cells expressing the p.C10Pfs*16 variant, and the inhibitor development in proband 1 was likely linked to the complete absence of circulating FVII. Structural analysis suggested that the G to R substitution in FVII found in probands 2 and 3 would destabilize the protein structure, and cell studies demonstrated a defective intracellular transport and increased endoplasmic reticulum stress. The molecular mechanism underlying the p.G240R variant could be reduced secretion caused by protein destabilization and misfolding.


Asunto(s)
Codón sin Sentido , Factor VII/genética , Hemostasis/genética , Homocigoto , Hemorragias Intracraneales/genética , Mutación Missense , Edad de Inicio , Animales , Células CHO , Coagulantes/uso terapéutico , Cricetulus , Estrés del Retículo Endoplásmico , Exones , Factor VII/metabolismo , Factor VIIa/uso terapéutico , Predisposición Genética a la Enfermedad , Células HEK293 , Hemostasis/efectos de los fármacos , Humanos , Hemorragias Intracraneales/sangre , Hemorragias Intracraneales/diagnóstico , Hemorragias Intracraneales/tratamiento farmacológico , Modelos Moleculares , Fenotipo , Proteínas Recombinantes/uso terapéutico , Resultado del Tratamiento
12.
Photochem Photobiol ; 96(3): 699-707, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32125700

RESUMEN

In the present work, we study the photodynamic action of cercosporin (cerco), a naturally occurring photosensitizer, on human cancer multicellular spheroids. U87 spheroids exhibit double the uptake of cerco than T47D and T98G spheroids as shown by flow cytometry on the single cell level. Moreover, cerco is efficiently internalized by cells throughout the spheroid as shown by confocal microscopy, for all three cell lines. Despite their higher cerco uptake, U87 spheroids show the least vulnerability to cerco-PDT, in contrast to the other two cell lines (T47D and T98G). While 300 µm diameter spheroids consistently shrink and become necrotic after cerco PDT, bigger spheroids (>500 µm) start to regrow following blue-light PDT and exhibit high viability. Cerco-PDT was found to be effective on bigger spheroids reaching 1mm in diameter especially under longer exposure to yellow light (~590 nm). In terms of metabolism, T47D and T98G undergo a complete bioenergetic collapse (respiration and glycolysis) as a result of cerco-PDT. U87 spheroids also experienced a respiratory collapse following cerco-PDT, but retained half their glycolytic activity.


Asunto(s)
Perileno/análogos & derivados , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Línea Celular Tumoral , Humanos , Microscopía Confocal , Necrosis/tratamiento farmacológico , Perileno/farmacología , Esferoides Celulares/metabolismo
13.
Nat Cell Biol ; 22(7): 856-867, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32601372

RESUMEN

The ESCRT-III membrane fission machinery maintains the integrity of the nuclear envelope. Although primary nuclei resealing takes minutes, micronuclear envelope ruptures seem to be irreversible. Instead, micronuclear ruptures result in catastrophic membrane collapse and are associated with chromosome fragmentation and chromothripsis, complex chromosome rearrangements thought to be a major driving force in cancer development. Here we use a combination of live microscopy and electron tomography, as well as computer simulations, to uncover the mechanism underlying micronuclear collapse. We show that, due to their small size, micronuclei inherently lack the capacity of primary nuclei to restrict the accumulation of CHMP7-LEMD2, a compartmentalization sensor that detects loss of nuclear integrity. This causes unrestrained ESCRT-III accumulation, which drives extensive membrane deformation, DNA damage and chromosome fragmentation. Thus, the nuclear-integrity surveillance machinery is a double-edged sword, as its sensitivity ensures rapid repair at primary nuclei while causing unrestrained activity at ruptured micronuclei, with catastrophic consequences for genome stability.


Asunto(s)
Núcleo Celular/patología , Cromatina/metabolismo , Aberraciones Cromosómicas , Daño del ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Inestabilidad Genómica , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos
14.
FASEB J ; 22(2): 466-76, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17928366

RESUMEN

In this study, we provide novel insight into the mechanism of how ERK2 can be sorted to different intracellular compartments and thereby mediate different responses. MEK1-activated ERK2 accumulated in the nucleus and induced proliferation. Conversely, MEK2-activated ERK2 was retained in the cytoplasm and allowed survival. Localization was a determinant for ERK2 functions since MEK1 switched from providing proliferation to be a mediator of survival when ERK2 was routed to the cytoplasm by the attachment of a nuclear export site. MEK1-mediated ERK2 nuclear translocation and proliferation were shown to depend on phosphorylation of S298 and T292 sites in the MEK1 proline-rich domain. These sites are phosphorylated on cellular adhesion in MEK1 but not MEK2. Whereas p21-activated kinase phosphorylates S298 and thus enhances the MEK1-ERK2 association, ERK2 phosphorylates T292, leading to release of active ERK2 from MEK1. On the basis of these results, we propose that the requirement of adhesion for cells to proliferate in response to growth factors, in part, may be explained by the MEK1 S298/T292 control of ERK2 nuclear translocation. In addition, we suggest that ERK2 intracellular localization determines whether growth factors mediate proliferation or survival and that the sorting occurs in an adhesion-dependent manner.


Asunto(s)
MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Transporte Activo de Núcleo Celular , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Células Cultivadas , ADN/biosíntesis , Regulación Enzimológica de la Expresión Génica , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/genética , Masculino , Proteína Quinasa 1 Activada por Mitógenos/genética , Mutación/genética , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Ratas , Ratas Wistar , Factor de Crecimiento Transformador beta/farmacología
15.
Cell Biosci ; 9: 69, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31467667

RESUMEN

BACKGROUND: Congenital coagulation factor (F) VII deficiency is a rare bleeding disorder caused by mutations in the F7 gene. The missense factor FVII variant p.Q160R is the disease-causing mutation in all Norwegian FVII deficient patients and results in reduced biological activity and antigen levels of FVII in patient plasma. Previous in vitro studies on this variant demonstrated impaired intracellular trafficking and reduced secretion, possibly due to protein misfolding. The aim of the study was therefore to assess the impact of chemical chaperones on cellular processing and secretion of this variant using a cell model based on overexpression of the recombinant protein. RESULTS: Through screening of compounds, we identified 4-phenylbutyrate (4-PBA) to increase the secretion of recombinant (r) FVII-160R by ~ 2.5-fold. Additionally, treatment with 4-PBA resulted in a modest increase in specific biological activity. Intracellular localization studies revealed that upon treatment with 4-PBA, rFVII-160R was secreted through Golgi and Golgi reassembly-stacking protein (GRASP)-structures. CONCLUSIONS: The present study demonstrates that the chemical chaperone 4-PBA, restores intracellular trafficking and increases the secretion of a missense FVII variant with functional properties in the extrinsic coagulation pathway.

16.
Nat Commun ; 10(1): 514, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705279

RESUMEN

Inhibitory signaling during natural killer (NK) cell education translates into increased responsiveness to activation; however, the intracellular mechanism for functional tuning by inhibitory receptors remains unclear. Secretory lysosomes are part of the acidic lysosomal compartment that mediates intracellular signalling in several cell types. Here we show that educated NK cells expressing self-MHC specific inhibitory killer cell immunoglobulin-like receptors (KIR) accumulate granzyme B in dense-core secretory lysosomes that converge close to the centrosome. This discrete morphological phenotype is independent of transcriptional programs that regulate effector function, metabolism and lysosomal biogenesis. Meanwhile, interference of signaling from acidic Ca2+ stores in primary NK cells reduces target-specific Ca2+-flux, degranulation and cytokine production. Furthermore, inhibition of PI(3,5)P2 synthesis, or genetic silencing of the PI(3,5)P2-regulated lysosomal Ca2+-channel TRPML1, leads to increased granzyme B and enhanced functional potential, thereby mimicking the educated state. These results indicate an intrinsic role for lysosomal remodeling in NK cell education.


Asunto(s)
Células Asesinas Naturales/metabolismo , Lisosomas/metabolismo , Aminopiridinas/farmacología , Animales , Granzimas/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Células K562 , Células Asesinas Naturales/efectos de los fármacos , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Ratones , Receptores KIR/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
17.
J Cell Physiol ; 215(3): 818-26, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18163378

RESUMEN

Ras proteins mediate signals both via extracellular signal-regulated kinase 1 and 2 (ERK), and phosphoinositide 3-kinase (PI3K). These signals are key events in cell protection and compensatory cell growth after exposure to cell damaging and pro-apoptotic stimuli, thus maintaining homeostasis. By transfection techniques, we found that both H-Ras and K-Ras were expressed and appeared functionally active in primary hepatocytes. We compared the ability of H-Ras and K-Ras homologues to preferentially activate one of the two pathways, thereby differentially controlling cell survival and growth. We found that ectopic expression of dominant negative (DN) H-RasN17, but not DN K-RasN17, efficiently inhibited both phosphorylation and translocation of ERK to the nuclear compartment, which are prerequisites for cell cycle progression. Furthermore, ectopic expression of constitutive active (CA) H-RasV12, but not CA K-RasV12, potentiated EGF-induced proliferation. We also found that expression of CA mutants of either H-Ras or K-Ras protected hepatocytes from transforming growth factor-beta1 (TGF-beta1)-induced apoptosis. However, H-Ras-induced survival was mediated by ERK/RSK as well as by PI3K, whereas K-Ras-induced survival was mediated by PI3K only. In conclusion, H-Ras and K-Ras had differential functions in proliferation and survival of primary hepatocytes. H-Ras was the major mediator of ERK-induced proliferation and survival, whereas H-Ras and K-Ras both mediated PI3K-induced survival.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hepatocitos/citología , Hepatocitos/enzimología , Proteínas Oncogénicas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas ras/metabolismo , Animales , Apoptosis/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/enzimología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Genes Dominantes , Hepatocitos/efectos de los fármacos , Humanos , Masculino , Ratones , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Factor de Crecimiento Transformador beta1/farmacología
18.
BMC Cell Biol ; 9: 16, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18380891

RESUMEN

BACKGROUND: Epidermal Growth Factor Receptor (EGFR) is a key target molecule in current treatment of several neoplastic diseases. Hence, in order to develop and improve current drugs targeting EGFR signalling, an accurate understanding of how this signalling pathway is regulated is required. It has recently been demonstrated that inhibition of cAMP-dependent protein kinase (PKA) induces a ligand-independent internalization of EGFR. Cyclic-AMP-dependent protein kinase consists of a regulatory dimer bound to two catalytic subunits. RESULTS: We have investigated the effect on EGFR levels after ablating the two catalytic subunits, Calpha and Cbeta in two different models. The first model used targeted disruption of either Calpha or Cbeta in mice whereas the second model used Calpha and Cbeta RNA interference in HeLa cells. In both models we observed a significant reduction of EGFR expression at the protein but not mRNA level. CONCLUSION: Our results suggest that PKA may represent a target that when manipulated can maintain EGFR protein levels at the single cell level as well as in intact animals.


Asunto(s)
Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Regulación hacia Abajo/genética , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Transducción de Señal/genética , Animales , Receptores ErbB/genética , Regulación Enzimológica de la Expresión Génica/genética , Células HeLa , Humanos , Ratones , Ratones Noqueados , Interferencia de ARN , ARN Mensajero/metabolismo
19.
J Control Release ; 288: 161-172, 2018 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-30217739

RESUMEN

Interactions between stromal cells and tumor cells pay a major role in cancer growth and progression. This is reflected in the composition of anticancer drugs which includes compounds directed towards the immune system and tumor-vasculature in addition to drugs aimed at the cancer cells themselves. Drug-based treatment regimens are currently designed to include compounds targeting the tumor stroma in addition to the cancer cells. Treatment limiting adverse effects remains, however, one of the major challenges for drug-based therapy and novel tolerable treatment modalities with diverse high efficacy on both tumor cells and stroma is therefore of high interest. It was hypothesized that the vascular targeted fusion toxin VEGF121/rGel in combination with the intracellular drug delivery technology photochemical internalization (PCI) stimulate direct cancer parenchymal cell death in addition to inhibition of tumor perfusion, and that an immune mediated response is relevant for treatment outcome. The aim of the present study was therefore to elucidate the anticancer mechanisms of VEGF121/rGel-PCI. In contrast to VEGF121/rGel monotherapy, VEGF121/rGel-PCI was found to mediate its effect through VEGFR1 and VEGFR2, and a targeted treatment effect was shown on two VEGFR1 expressing cancer cell lines. A cancer parenchymal treatment effect was further indicated on H&E stains of CT26-CL25 and 4 T1 tumors. VEGF121/rGel-PCI was shown, by dynamic contrast enhanced MRI, to induce a sustained inhibition of tumor perfusion in both tumor models. A 50% complete remission (CR) of CT26.CL25 colon carcinoma allografts was found in immunocompetent mice while no CR was detected in CT26.CL25 bearing athymic mice. In conclusion, the present report indicate VEGF121/rGel -PCI as a treatment modality with multimodal tumor targeted efficacy that should be further developed towards clinical utilization.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Proteínas Inactivadoras de Ribosomas Tipo 1/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Animales , Línea Celular Tumoral , Femenino , Luz , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
20.
Thromb Haemost ; 118(4): 664-675, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618153

RESUMEN

Congenital factor (F) VII deficiency is a bleeding disorder caused by a heterogeneous pattern of mutations in the F7 gene. Protein misfolding due to mutations is a strong candidate mechanism to produce the highly represented type I FVII deficiency forms, characterized by a concomitant deficiency of FVII antigen and activity. Misfolded proteins can accumulate within the endoplasmic reticulum (ER) causing ER stress with subsequent activation of the unfolded protein response (UPR). So far, there are limited data on this important issue in FVII deficiency. In this study, we chose as candidate FVII model mutations, the p.Q160R, p.I289del and p.A354V-p.P464Hfs, which are all associated with severe to moderate type I FVII deficiency. In vitro expression of the recombinant (r) mutants rFVII-160R, rFVII-289del or rFVII-354V-464Hfs, which are characterized by either amino acid substitution, deletion, or by an extended carboxyl terminus, demonstrated inefficient secretion of the mutant proteins, probably caused by intracellular retention and association with ER chaperones. Both ER stress and UPR were activated following expression of all FVII mutants, with the highest response for rFVII-289del and rFVII-354V-464Hfs. These data unravel new knowledge on pathogenic mechanisms leading to FVII deficiency, and support the investigation of pharmaceutical modulators of ER stress and UPR as therapeutic agents.


Asunto(s)
Estrés del Retículo Endoplásmico , Deficiencia del Factor VII/congénito , Deficiencia del Factor VII/genética , Respuesta de Proteína Desplegada , Animales , Células CHO , Línea Celular , Cricetulus , Retículo Endoplásmico/metabolismo , Factor VII/metabolismo , Eliminación de Gen , Genes Reporteros , Células HEK293 , Humanos , Proteínas Mutantes/genética , Mutación , Pliegue de Proteína , Proteínas Recombinantes/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA