Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(45): 18465-70, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23091037

RESUMEN

HBx is a multifunctional hepatitis B virus (HBV) protein that is crucial for HBV infection and pathogenesis and a contributing cause of hepatocyte carcinogenesis. However, the host targets and mechanisms of action of HBx are poorly characterized. We show here that expression of HBx in Caenorhabditis elegans induces both necrotic and apoptotic cell death, mimicking an early event of liver infection by HBV. Genetic and biochemical analyses indicate that HBx interacts directly with the B-cell lymphoma 2 (Bcl-2) homolog CED-9 (cell death abnormal) through a Bcl-2 homology 3 (BH3)-like motif to trigger both cytosolic Ca(2+) increase and cell death. Importantly, Bcl-2 can substitute for CED-9 in mediating HBx-induced cell killing in C. elegans, suggesting that CED-9 and Bcl-2 are conserved cellular targets of HBx. A genetic suppressor screen of HBx-induced cell death has produced many mutations, including mutations in key regulators from both apoptosis and necrosis pathways, indicating that this screen can identify new apoptosis and necrosis genes. Our results suggest that C. elegans could serve as an animal model for identifying crucial host factors and signaling pathways of HBx and aid in development of strategies to treat HBV-induced liver disorders.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Espacio Intracelular/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transactivadores/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/química , Citosol/metabolismo , Genes Supresores , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Necrosis , Permeabilidad , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/química , Transducción de Señal , Transactivadores/química , Transactivadores/genética , Proteínas Reguladoras y Accesorias Virales
2.
J Biol Chem ; 287(10): 7110-20, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22223640

RESUMEN

Endonuclease G (EndoG) is a mitochondrial protein that traverses to the nucleus and participates in chromosomal DNA degradation during apoptosis in yeast, worms, flies, and mammals. However, it remains unclear how EndoG binds and digests DNA. Here we show that the Caenorhabditis elegans CPS-6, a homolog of EndoG, is a homodimeric Mg(2+)-dependent nuclease, binding preferentially to G-tract DNA in the optimum low salt buffer at pH 7. The crystal structure of CPS-6 was determined at 1.8 Å resolution, revealing a mixed αß topology with the two ßßα-metal finger nuclease motifs located distantly at the two sides of the dimeric enzyme. A structural model of the CPS-6-DNA complex suggested a positively charged DNA-binding groove near the Mg(2+)-bound active site. Mutations of four aromatic and basic residues: Phe(122), Arg(146), Arg(156), and Phe(166), in the protein-DNA interface significantly reduced the DNA binding and cleavage activity of CPS-6, confirming that these residues are critical for CPS-6-DNA interactions. In vivo transformation rescue experiments further showed that the reduced DNase activity of CPS-6 mutants was positively correlated with its diminished cell killing activity in C. elegans. Taken together, these biochemical, structural, mutagenesis, and in vivo data reveal a molecular basis of how CPS-6 binds and hydrolyzes DNA to promote cell death.


Asunto(s)
Apoptosis/fisiología , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/enzimología , ADN de Helmintos/química , Proteínas Mitocondriales/química , Modelos Moleculares , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografía por Rayos X , ADN de Helmintos/genética , ADN de Helmintos/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Hidrólisis , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación Missense , Relación Estructura-Actividad
3.
Science ; 353(6297): 394-9, 2016 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-27338704

RESUMEN

Mitochondria are inherited maternally in most animals, but the mechanisms of selective paternal mitochondrial elimination (PME) are unknown. While examining fertilization in Caenorhabditis elegans, we observed that paternal mitochondria rapidly lose their inner membrane integrity. CPS-6, a mitochondrial endonuclease G, serves as a paternal mitochondrial factor that is critical for PME. We found that CPS-6 relocates from the intermembrane space of paternal mitochondria to the matrix after fertilization to degrade mitochondrial DNA. It acts with maternal autophagy and proteasome machineries to promote PME. Loss of cps-6 delays breakdown of mitochondrial inner membranes, autophagosome enclosure of paternal mitochondria, and PME. Delayed removal of paternal mitochondria causes increased embryonic lethality, demonstrating that PME is important for normal animal development. Thus, CPS-6 functions as a paternal mitochondrial degradation factor during animal development.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , ADN Mitocondrial/metabolismo , Endodesoxirribonucleasas/metabolismo , Fertilización , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Animales , Autofagia , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero/citología , Embrión no Mamífero/enzimología , Endodesoxirribonucleasas/genética , Masculino , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Espermatozoides/enzimología , Espermatozoides/ultraestructura
4.
Cell Res ; 24(2): 218-32, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24323044

RESUMEN

During C. elegans apoptosis, the dicer ribonuclease (DCR-1) is cleaved by the cell death protease CED-3 to generate a truncated DCR-1 (tDCR-1) with one and a half ribonuclease III (RNase III) domains, converting it into a deoxyribonuclease (DNase) that initiates apoptotic chromosome fragmentation. We performed biochemical and functional analyses to understand this unexpected RNase to DNase conversion. In full-length DCR-1, tDCR-1 DNase activity is suppressed by its N-terminal DCR-1 sequence. However, not all the sequence elements in the N-terminal DCR-1 are required for this suppression. Our deletion analysis reveals that a 20-residue α-helix sequence in DCR-1 appears to define a critical break point for the sequence required for suppressing tDCR-1 DNase activity through a structure-dependent mechanism. Removal of the N-terminal DCR-1 sequence from tDCR-1 activates a DNA-binding activity that also requires the one half RNase IIIa domain, and enables tDCR-1 to process DNA. Consistently, structural modeling of DCR-1 and tDCR-1 suggests that cleavage of DCR-1 by CED-3 may cause a conformational change that allows tDCR-1 to bind and process DNA, and may remove steric hindrance that blocks DNA access to tDCR-1. Moreover, a new DNase can be engineered using different RNase III domains, including the one from bacterial RNase III. Our results indicate that very distantly related RNase III enzymes have the potential to cleave DNA when processed proteolytically or paired with an appropriate partner that facilitates binding to DNA. We suggest the possibility that this phenomenon may be extrapolated to other ribonucleases.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caspasas/metabolismo , Desoxirribonucleasas/metabolismo , Ribonucleasa III/metabolismo , Animales , Apoptosis , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , ADN/metabolismo , Mutagénesis , Unión Proteica , Estructura Terciaria de Proteína , Ribonucleasa III/química , Ribonucleasa III/genética
5.
Nat Commun ; 4: 2726, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24225442

RESUMEN

During apoptosis, phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, is exposed on the surface of apoptotic cells and serves as an 'eat-me' signal to trigger phagocytosis. It is poorly understood how PS exposure is activated in apoptotic cells. Here we report that CED-8, a Caenorhabditis elegans protein implicated in controlling the kinetics of apoptosis and a homologue of the XK family proteins, is a substrate of the CED-3 caspase. Cleavage of CED-8 by CED-3 activates its proapoptotic function and generates a carboxyl-terminal cleavage product, acCED-8, that promotes PS externalization in apoptotic cells and can induce ectopic PS exposure in living cells. Consistent with its role in promoting PS externalization in apoptotic cells, ced-8 is important for cell corpse engulfment in C. elegans. Our finding identifies a crucial link between caspase activation and PS externalization, which triggers phagocytosis of apoptotic cells.


Asunto(s)
Apoptosis , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caspasas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilserinas/metabolismo , Alelos , Animales , Animales Modificados Genéticamente , Membrana Celular/metabolismo , Activación Enzimática , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Choque Térmico/metabolismo , Mutación , Fagocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA