Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Stem Cells ; 36(4): 514-526, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29282804

RESUMEN

The Nkx2-5 gene codes for a transcription factor that plays a critical role in heart development. Heterozygous mutations in NKX2-5 in both human and mice result in congenital heart defects (CHDs). However, the molecular mechanisms by which these mutations cause the disease are still unknown. Recently, we have generated the heterozygous mouse model of the human CHDs associated mutation NKX2-5 R142C (Nkx2-5R141C/+ mouse ortholog of human NKX2-5 R142C variant) that developed septal and conduction defects. This study generated a heterozygous Nkx2-5 R141C mouse embryonic stem cell line (Nkx2-5R141C/+ mESCs) to model CHDs in vitro. We observed that Nkx2-5R141C/+ mESCs display an alteration in the expression of genes that are essential for normal heart development. Furthermore, the reduced cardiomyogenesis is paralleled by a reduction in nuclear import of Nkx2-5 protein. Examination of the Nkx2-5R141C/+ embryos at E8.5 revealed a transient loss of cardiomyogenesis, which is consistent with the phenotype observed in vitro. Moreover, gene expression profiling of Nkx2-5R141C/+ cells at an early stage of cardiac differentiation revealed pronounced deregulation of several cardiac differentiation and function genes. Collectively, our data showed that heterozygosity for the R141C mutation results in disruption of the cellular distribution of Nkx2-5 protein, a transient reduction in cardiomyogenesis that may disrupt the early patterning of the heart, and this, in turn, affects the intricate orchestration of signaling pathways leading to downregulation of Bone morphogenetic protein (BMP) and Notch signaling. Therefore, we have developed mESCs model of a human CHD, providing an in vitro system to examine early stages of heart development, which are otherwise difficult to study in vivo. Stem Cells 2018;36:514-526.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Cardiopatías Congénitas/metabolismo , Proteína Homeótica Nkx-2.5/metabolismo , Modelos Cardiovasculares , Células Madre Embrionarias de Ratones/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Sustitución de Aminoácidos , Animales , Proteínas Morfogenéticas Óseas/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Proteína Homeótica Nkx-2.5/genética , Humanos , Ratones , Células Madre Embrionarias de Ratones/patología , Mutación Missense , Receptores Notch/genética
2.
J Mol Cell Cardiol ; 105: 89-98, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28302382

RESUMEN

The Nkx2.5 gene encodes a transcription factor that plays a critical role in heart development. In humans, heterozygous mutations in NKX2.5 result in congenital heart defects (CHDs). However, the molecular mechanisms by which these mutations cause the disease remain unknown. NKX2.5-R142C is a mutation that was reported to be associated with atrial septal defect (ASD) and atrioventricular (AV) block in 13-patients from one family. The R142C mutation is located within both the DNA-binding domain and the nuclear localization sequence of NKX2.5 protein. The pathogenesis of CHDs in humans with R142C point mutation is not well understood. To examine the functional deficit associated with this mutation in vivo, we generated and characterized a knock-in mouse that harbours the human mutation R142C. Systematic structural and functional examination of the embryonic, newborn, and adult mice revealed that the homozygous embryos Nkx2.5R141C/R141C are developmentally arrested around E10.5 with delayed heart morphogenesis and downregulation of Nkx2.5 target genes, Anf, Mlc2v, Actc1 and Cx40. Histological examination of Nkx2.5R141C/+ newborn hearts showed that 36% displayed ASD, with at least 80% 0f adult heterozygotes displaying a septal defect. Moreover, heterozygous Nkx2.5R141C/+ newborn mice have downregulation of ion channel genes with 11/12 adult mice manifesting a prolonged PR interval that is indicative of 1st degree AV block. Collectively, the present study demonstrates that mice with the R141C point mutation in the Nkx2.5 allele phenocopies humans with the NKX2.5 R142C point mutation.


Asunto(s)
Estudios de Asociación Genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/fisiopatología , Proteína Homeótica Nkx-2.5/genética , Mutación , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Expresión Génica , Marcación de Gen , Vectores Genéticos/genética , Genotipo , Cardiopatías Congénitas/diagnóstico , Humanos , Masculino , Ratones , Ratones Transgénicos , Fenotipo
3.
Methods ; 101: 73-84, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26404920

RESUMEN

Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias Humanas/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Técnicas de Cultivo de Célula , Células Cultivadas , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Microscopía Fluorescente , Células Musculares/fisiología , Mioblastos/fisiología
4.
EMBO J ; 30(12): 2477-89, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21556048

RESUMEN

The MEF2 factors regulate transcription during cardiac and skeletal myogenesis. MEF2 factors establish skeletal muscle commitment by amplifying and synergizing with MyoD. While phosphorylation is known to regulate MEF2 function, lineage-specific regulation is unknown. Here, we show that phosphorylation of MEF2C on T(80) by skeletal myosin light chain kinase (skMLCK) enhances skeletal and not cardiac myogenesis. A phosphorylation-deficient MEF2C mutant (MEFT80A) enhanced cardiac, but not skeletal myogenesis in P19 stem cells. Further, MEFT80A was deficient in recruitment of p300 to skeletal but not cardiac muscle promoters. In gain-of-function studies, skMLCK upregulated myogenic regulatory factor (MRF) expression, leading to enhanced skeletal myogenesis in P19 cells and more efficient myogenic conversion. In loss-of-function studies, MLCK was essential for efficient MRF expression and subsequent myogenesis in embryonic stem (ES) and P19 cells as well as for proper activation of quiescent satellite cells. Thus, skMLCK regulates MRF expression by controlling the MEF2C-dependent recruitment of histone acetyltransferases to skeletal muscle promoters. This work identifies the first kinase that regulates MyoD and Myf5 expression in ES or satellite cells.


Asunto(s)
Proteínas de Dominio MADS/metabolismo , Desarrollo de Músculos/fisiología , Músculo Esquelético/citología , Músculo Esquelético/enzimología , Factores Reguladores Miogénicos/metabolismo , Quinasa de Cadena Ligera de Miosina/fisiología , Secuencia de Aminoácidos , Animales , Carcinoma Embrionario/enzimología , Carcinoma Embrionario/patología , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas de Dominio MADS/fisiología , Factores de Transcripción MEF2 , Ratones , Datos de Secuencia Molecular , Factores Reguladores Miogénicos/fisiología , Células Madre Neoplásicas/enzimología , Células Madre Neoplásicas/patología , Especificidad de Órganos , Fosforilación , Treonina/metabolismo
5.
Circ Res ; 112(2): 257-66, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23168335

RESUMEN

RATIONALE: Nkx2.5 is a transcription factor that regulates cardiomyogenesis in vivo and in embryonic stem cells. It is also a common target in congenital heart disease. Although Nkx2.5 has been implicated in the regulation of many cellular processes that ultimately contribute to cardiomyogenesis and morphogenesis of the mature heart, relatively little is known about how it is regulated at a functional level. OBJECTIVE: We have undertaken a proteomic screen to identify novel binding partners of Nkx2.5 during cardiomyogenic differentiation in an effort to better understand the regulation of its transcriptional activity. METHODS AND RESULTS: Purification of Nkx2.5 from differentiating cells identified the myosin phosphatase subunits protein phosphatase 1ß and myosin phosphatase targeting subunit 1 (Mypt1) as novel binding partners. The interaction with protein phosphatase 1 ß/Mypt1 resulted in exclusion of Nkx2.5 from the nucleus and, consequently, inhibition of its transcriptional activity. Exclusion of Nkx2.5 was inhibited by treatment with leptomycin B and was dependent on an Mypt1 nuclear export signal. Furthermore, in transient transfection experiments, Nkx2.5 colocalized outside the nucleus with phosphorylated Mypt1 in a manner dependent on Wnt signaling and Rho-associated protein kinase. Treatment of differentiating mouse embryonic stem cells with Wnt3a resulted in enhanced phosphorylation of endogenous Mypt1, increased nuclear exclusion of endogenous Nkx2.5, and a failure to undergo terminal cardiomyogenesis. Finally, knockdown of Mypt1 resulted in rescue of Wnt3a-mediated inhibition of cardiomyogenesis, indicating that Mypt1 is required for this process. CONCLUSIONS: We have identified a novel interaction between Nkx2.5 and myosin phosphatase. Promoting this interaction represents a novel mechanism whereby Wnt3a regulates Nkx2.5 and inhibits cardiomyogenesis.


Asunto(s)
Inhibidores de Crecimiento/fisiología , Proteínas de Homeodominio/metabolismo , Miocitos Cardíacos/fisiología , Fosfatasa de Miosina de Cadena Ligera/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/fisiología , Proteína Wnt3A/fisiología , Quinasas Asociadas a rho/fisiología , Animales , Células Madre Embrionarias/enzimología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Células HEK293 , Proteína Homeótica Nkx-2.5 , Humanos , Ratones , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Proteína Fosfatasa 1/metabolismo , Fracciones Subcelulares/enzimología , Fracciones Subcelulares/metabolismo
6.
J Biol Chem ; 288(6): 4389-404, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23266826

RESUMEN

The inhibition of MyoD expression is important for obtaining muscle progenitors that can replenish the satellite cell niche during muscle repair. Progenitors could be derived from either embryonic stem cells or satellite cells. Hedgehog (Hh) signaling is important for MyoD expression during embryogenesis and adult muscle regeneration. To date, the mechanistic understanding of MyoD regulation by Hh signaling is unclear. Here, we demonstrate that the Hh effector, Gli2, regulates MyoD expression and associates with MyoD gene elements. Gain- and loss-of-function experiments in pluripotent P19 cells show that Gli2 activity is sufficient and required for efficient MyoD expression during skeletal myogenesis. Inhibition of Hh signaling reduces MyoD expression during satellite cell activation in vitro. In addition to regulating MyoD expression, Hh signaling regulates MyoD transcriptional activity, and MyoD activates Hh signaling in myogenic conversion assays. Finally, Gli2, MyoD, and MEF2C form a protein complex, which enhances MyoD activity on skeletal muscle-related promoters. We therefore link Hh signaling to the function and expression of MyoD protein during myogenesis in stem cells.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Proteína MioD/biosíntesis , Células Madre Pluripotentes/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular , Proteínas Hedgehog/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción MEF2 , Ratones , Ratones Transgénicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Desarrollo de Músculos/fisiología , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Células Madre Pluripotentes/citología , Células Satélite del Músculo Esquelético/citología , Proteína Gli2 con Dedos de Zinc
7.
J Mol Cell Cardiol ; 60: 164-71, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23598283

RESUMEN

Since a previous study (Goldman-Johnson et al., 2008 [4]) has shown that androgens can stimulate increased differentiation of mouse embryonic stem (mES) cells into cardiomyocytes using a genomic pathway, the aim of our study is to elucidate the molecular mechanisms regulating testosterone-enhanced cardiomyogenesis. Testosterone upregulated cardiomyogenic transcription factors, including GATA4, MEF2C, and Nkx2.5, muscle structural proteins, and the pacemaker ion channel HCN4 in a dose-dependent manner, in mES cells and P19 embryonal carcinoma cells. Knock-down of the androgen receptor (AR) or treatment with anti-androgenic compounds inhibited cardiomyogenesis, supporting the requirement of the genomic pathway. Chromatin immunoprecipitation (ChIP) studies showed that testosterone enhanced recruitment of AR to the regulatory regions of MEF2C and HCN4 genes, which was associated with increased histone acetylation. In summary, testosterone upregulated cardiomyogenic transcription factor and HCN4 expression in stem cells. Further, testosterone induced cardiomyogenesis, at least in part, by recruiting the AR receptor to the regulatory regions of the MEF2C and HCN4 genes. These results provide a detailed molecular analysis of the function of testosterone in stem cells and may offer molecular insight into the role of steroids in the heart.


Asunto(s)
Andrógenos/farmacología , Células Madre Embrionarias/metabolismo , Corazón/embriología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/biosíntesis , Organogénesis/efectos de los fármacos , Receptores Androgénicos/metabolismo , Testosterona/farmacología , Animales , Línea Celular , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Factores de Transcripción MEF2/biosíntesis , Factores de Transcripción MEF2/genética , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Organogénesis/fisiología , Receptores Androgénicos/genética , Elementos de Respuesta/fisiología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
8.
Cell Mol Life Sci ; 69(2): 215-21, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21947442

RESUMEN

Aberrant or elevated levels of reactive oxygen species (ROS) can mediate deleterious cellular effects, including neuronal toxicity and degeneration observed in the etiology of a number of pathological conditions, including Alzheimer's and Parkinson's diseases. Nevertheless, ROS can be generated in a controlled manner and can regulate redox sensitive transcription factors such as NFκB, AP-1 and NFAT. Moreover, ROS can modulate the redox state of tyrosine phosphorylated proteins, thereby having an impact on many transcriptional networks and signaling cascades important for neurogenesis. A large body of literature links the controlled generation of ROS at low-to-moderate levels with the stimulation of differentiation in certain developmental programs such as neurogenesis. In this regard, ROS are involved in governing the acquisition of the neural fate-from neural induction to the elaboration of axons. Here, we summarize and discuss the growing body of literature that describe a role for ROS signaling in neuronal development.


Asunto(s)
Sistema Nervioso/metabolismo , Neurogénesis , Especies Reactivas de Oxígeno/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , NADPH Oxidasas/metabolismo , Sistema Nervioso/crecimiento & desarrollo , Neuronas/enzimología , Transducción de Señal
9.
J Biol Chem ; 286(4): 2517-25, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21078671

RESUMEN

Gain- and loss-of-function experiments have illustrated that the family of myogenic regulatory factors is necessary and sufficient for the formation of skeletal muscle. Furthermore, MyoD required cellular aggregation to induce myogenesis in P19 embryonal carcinoma stem cells. To determine the mechanism by which stem cells can be directed into skeletal muscle, a time course of P19 cell differentiation was examined in the presence and absence of exogenous MyoD. By quantitative PCR, the first MyoD up-regulated transcripts were the premyogenic mesoderm factors Meox1, Pax7, Six1, and Eya2 on day 4 of differentiation. Subsequently, the myoblast markers myogenin, MEF2C, and Myf5 were up-regulated, leading to skeletal myogenesis. These results were corroborated by Western blot analysis, showing up-regulation of Pax3, Six1, and MEF2C proteins, prior to myogenin protein expression. To determine at what stage a dominant-negative MyoD/EnR mutant could inhibit myogenesis, stable cell lines were created and examined. Interestingly, the premyogenic mesoderm factors, Meox1, Pax3/7, Six1, Eya2, and Foxc1, were down-regulated, and as expected, skeletal myogenesis was abolished. Finally, to identify direct targets of MyoD in this system, chromatin immunoprecipitation experiments were performed. MyoD was observed associated with regulatory regions of Meox1, Pax3/7, Six1, Eya2, and myogenin genes. Taken together, MyoD directs stem cells into the skeletal muscle lineage by binding and activating the expression of premyogenic mesoderm genes, prior to activating myoblast genes.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Diferenciación Celular/fisiología , Proteínas de Homeodominio/biosíntesis , Desarrollo de Músculos/fisiología , Proteína MioD/metabolismo , Mioblastos Esqueléticos/metabolismo , Células Madre/metabolismo , Regulación hacia Arriba/fisiología , Animales , Antígenos de Diferenciación/genética , Línea Celular Tumoral , Regulación hacia Abajo/fisiología , Proteínas de Homeodominio/genética , Ratones , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mutación , Proteína MioD/genética , Mioblastos Esqueléticos/citología , Células Madre/citología
10.
J Biol Chem ; 285(23): 17974-85, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20233719

RESUMEN

In this study, we describe a role for the mammalian Numb-interacting protein 1 (Nip1) in regulation of neuronal differentiation in stem cells. The expression of Nip1 was detected in the developing mouse brain, embryonic stem cells, primary neuronal stem cells, and retinoic acid-treated P19 embryonal carcinoma cells. The highest expression of Nip1 was observed in undifferentiated neuronal stem cells and was associated with Duox1-mediated reactive oxygen species ROS production. Ectopic nip1 expression in P19 embryonal carcinoma cells induced neuronal differentiation, and this phenotype was also linked to elevated ROS production. The neuronal differentiation in nip1-overexpressing P19 cells was achieved in a retinoic acid-independent manner and was corroborated by an increase in the expression of the neuronal basic helix-loop-helix transcription factors and neural-lineage cell markers. Furthermore, depletion of nip1 by short hairpin RNA led to a decrease in the expression of neuronal basic helix-loop-helix transcription factors and ROS. However, inhibition of ROS production in nip1-overexpressing P19 cells restricted but did not extinguish neuronal differentiation. Microarray and mass spectrometry analysis identified intermediate filaments as the principal cytoskeletal elements affected by up-regulation of nip1. We show here the first evidence for a functional interaction between Nip1 and a component of the nuclear lamina, lamin A/C. associated with a neuronal-specific phenotype. Taken together, our data reveal an important role for Nip1 in the guidance of neuronal differentiation through ROS generation and modulation of intermediate filaments and implicate Nip1 as a novel intrinsic regulator of neuronal cell fate.


Asunto(s)
NADPH Oxidasas/metabolismo , Neuronas/metabolismo , Células Madre/citología , Animales , Encéfalo/metabolismo , Línea Celular Tumoral , Linaje de la Célula , Citoesqueleto/metabolismo , Oxidasas Duales , Lamina Tipo A/química , Ratones , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Fenotipo , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno , Células Madre/metabolismo
11.
Dev Cell ; 11(4): 535-46, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17011492

RESUMEN

The transcriptional mechanisms underlying lineage specification and differentiation of embryonic stem (ES) cells remain elusive. Oct-3/4 (POU5f1) is one of the earliest transcription factors expressed in the embryo. Both the pluripotency and the fate of ES cells depend upon a tight control of Oct-3/4 expression. We report that transgene- or TGFbeta-induced increase in Oct-3/4 mRNA and protein levels in undifferentiated ES cells and at early stages of differentiation triggers expression of mesodermal and cardiac specific genes through Smad2/4. cDNA antisense- and siRNA-mediated inhibition of upregulation of Oct-3/4 in ES cells prevent their specification toward the mesoderm and their differentiation into cardiomyocytes. Similarly, Oct-3/4 siRNA injected in the inner cell mass of blastocysts impairs cardiogenesis in early embryos. Thus, quantitative Oct-3/4 expression is regulated by a morphogen, pointing to a pivotal and physiological function of the POU factor in mesodermal and cardiac commitments of ES cells and of the epiblast.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/crecimiento & desarrollo , Miocitos Cardíacos/citología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre/citología , Células Madre/fisiología , Animales , Blastocisto/citología , Blastocisto/metabolismo , Linaje de la Célula , Inmunohistoquímica , Hibridación in Situ , Ratones , Microinyecciones , Miocitos Cardíacos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Técnicas de Cultivo de Órganos , ARN Mensajero/biosíntesis , ARN Interferente Pequeño/metabolismo
12.
Differentiation ; 79(1): 31-40, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19782461

RESUMEN

FOXC1 and FOXC2 are forkhead/winged-helix transcription factors expressed in paraxial mesoderm and somites. Emphasizing the importance of FOXC1/2 during embryonic development, double-knockout mice lacking the alleles for both Foxc1 and Foxc2 failed to form segmented somites and undergo myogenesis. The present study aims to determine upstream factors that regulate Foxc1/2 expression during the differentiation of P19 cells into skeletal muscle. Previous work had shown that dominant-negative forms of beta-catenin, Gli2, and Meox1 could inhibit distinct stages of skeletal myogenesis in P19 cells. In the presence of a dominant-negative beta-catenin fusion protein, Foxc1/2 transcripts were not upregulated and neither were markers of somitogenesis/myogenesis, including Meox1, Pax3 and MyoD. Conversely, inhibition of GSK3 by LiCl or overexpression of activated beta-catenin in aggregated P19 cells resulted in enhancement of Foxc1/2 expression, indicating that FOX transcription may be under the control of Wnt signaling. Supporting this hypothesis, beta-catenin bound to conserved regions upstream of Foxc1 during P19 cell differentiation and drove transcription from this region in a promoter assay. In addition, ectopic expression of a dominant-negative Meox1 or Gli2 resulted in decreased Foxc1/2 transcript levels, correlating with inhibition of skeletal myogenesis. Overexpression of Gli2 was also sufficient to upregulate Foxc1/2 transcript levels and induce skeletal myogenesis. In summary, Foxc1/2 expression is dependent on a complex interplay from various signaling inputs from the Wnt and Shh pathways during early stages of in vitro skeletal myogenesis.


Asunto(s)
Carcinoma Embrionario/metabolismo , Factores de Transcripción Forkhead/genética , Músculo Esquelético/citología , Transducción de Señal/fisiología , Proteínas Wnt/fisiología , beta Catenina/metabolismo , Animales , Northern Blotting , Carcinoma Embrionario/patología , Diferenciación Celular , Inmunoprecipitación de Cromatina , Técnica del Anticuerpo Fluorescente , Factores de Transcripción Forkhead/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción , Células Tumorales Cultivadas , Proteína Gli2 con Dedos de Zinc , beta Catenina/genética
13.
Stem Cells ; 27(6): 1231-43, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19489079

RESUMEN

In this study, we have identified novel roles for Sox15 and Sox7 as regulators of muscle precursor cell fate in P19 cells. To examine the role of Sox15 and Sox7 during skeletal myogenesis, we isolated populations of P19 cells with either gene stably integrated into the genome, termed P19[Sox15] and P19[Sox7]. Both SOX proteins were sufficient to upregulate the expression of the muscle precursor markers Pax3/7, Meox1, and Foxc1 in aggregated cells. In contrast to the P19[Sox7] cell lines, which subsequently differentiated into skeletal muscle, myogenesis failed to progress past the precursor stage in P19[Sox15] cell lines, shown by the lack of MyoD and myosin heavy chain (MHC) expression. P19[Sox15] clones showed elevated and sustained levels of the inhibitory factors Msx1 and Id1, which may account for the lack of myogenic progression in these cells. Stable expression of a Sox15 dominant-negative protein resulted in the loss of Pax3/7 and Meox1 transcripts, as well as myogenic regulatory factor (MRF) and MHC expression. These results suggest that Sox15, or genes that are bound by Sox15, are necessary and sufficient for the acquisition of the muscle precursor cell fate. On the other hand, knockdown of endogenous Sox15 caused a decrease in Pax3 and Meox1, but not MRF expression, suggesting that other factors can compensate in the absence of Sox15. Taken together, these results show that both Sox7 and Sox15 are able to induce the early stages of myogenesis, but only Sox7 is sufficient to initiate the formation of fully differentiated skeletal myocytes.


Asunto(s)
Diferenciación Celular/fisiología , Desarrollo de Músculos/genética , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Factores de Transcripción SOX/metabolismo , Factores de Transcripción SOXF/metabolismo , Animales , Línea Celular , Técnica del Anticuerpo Fluorescente , Expresión Génica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Inmunoprecipitación , Ratones , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Interferencia de ARN , Factores de Transcripción SOX/genética , Factores de Transcripción SOXF/genética , Células Madre/fisiología , Transfección
14.
Mol Cell Proteomics ; 7(3): 560-72, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18065756

RESUMEN

Very little is known about SET- and MYND-containing protein 2 (SMYD2), a member of the SMYD protein family. However, the interest in better understanding the roles of SMYD2 has grown because of recent reports indicating that SMYD2 methylates p53 and histone H3. In this study, we present a combined proteomics and genomics study of SMYD2 designed to elucidate its molecular roles. We report the cytosolic and nuclear interactome of SMYD2 using a combination of immunoprecipitation coupled with high throughput MS, chromatin immunoprecipitation coupled with high throughput MS, and co-immunoprecipitation methods. In particular, we report that SMYD2 interacted with HSP90alpha independently of the SET and MYND domains, with EBP41L3 through the MYND domain, and with p53 through the SET domain. We demonstrated that the interaction of SMYD2 with HSP90alpha enhances SMYD2 histone methyltransferase activity and specificity for histone H3 at lysine 4 (H3K4) in vitro. Interestingly histone H3K36 methyltransferase activity was independent of its interaction with HSP90alpha similar to LSD1 dependence on the androgen receptor. We also showed that the SET domain is required for the methylation at H3K4. We demonstrated using a modified chromatin immunoprecipitation protocol that the SMYD2 gain of function leads to an increase in H3K4 methylation in vivo, whereas no observable levels of H3K36 were detected. We also report that the SMYD2 gain of function was correlated with the up-regulation of 37 and down-regulation of four genes, the majority of which are involved in the cell cycle, chromatin remodeling, and transcriptional regulation. TACC2 is one of the genes up-regulated as a result of SMYD2 gain of function. Up-regulation of TACC2 by SMYD2 occurred as a result of SMYD2 binding to the TACC2 promoter where it methylates H3K4. Furthermore the combination of the SMYD2 interactome with the gene expression data suggests that some of the genes regulated by SMYD2 are closely associated with SMYD2-interacting proteins.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Proteómica/métodos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Línea Celular , ADN/metabolismo , Regulación de la Expresión Génica , Proteínas HSP90 de Choque Térmico/metabolismo , Histonas/metabolismo , Humanos , Metilación , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Especificidad por Sustrato , Proteínas Supresoras de Tumor/genética
15.
BMC Biol ; 7: 67, 2009 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-19814781

RESUMEN

BACKGROUND: Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation. RESULTS: Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a beta-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative beta-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4. CONCLUSION: RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating beta-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Músculo Esquelético/citología , Células Madre/citología , Células Madre/efectos de los fármacos , Tretinoina/farmacología , beta Catenina/metabolismo , Animales , Tipificación del Cuerpo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Dimetilsulfóxido/farmacología , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Dominantes , Humanos , Ratones , Modelos Biológicos , Desarrollo de Músculos/efectos de los fármacos , Proteína MioD/genética , Proteína MioD/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Organogénesis/efectos de los fármacos , Paxillin/genética , Paxillin/metabolismo
16.
Curr Protoc Stem Cell Biol ; 48(1): e75, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30548532

RESUMEN

We have established an in vitro model of the human congenital heart defect (CHD)-associated mutation NKX2.5 R141C. We describe the use of the hanging drop method to differentiate Nkx2.5R141C/+ murine embryonic stem cells (mESCs) along with Nkx2.5+/+ control cells. This method allows us to recapitulate the early stages of embryonic heart development in tissue culture. We also use qRT-PCR and immunofluorescence to examine samples at different time points during differentiation to validate our data. The in vivo model is a mouse line with a knock-in of the same mutation. We describe the isolation of RNA from embryonic day 8.5 (E8.5) embryos and E9.5 hearts of wild-type and mutant mice. We found that the in vitro model shows reduced cardiomyogenesis, similar to Nkx2.5R141C/+ embryos at E8.5, indicating a transient loss of cardiomyogenesis at this time point. These results suggest that our in vitro model can be used to study very early changes in heart development that cause CHD. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Cardiopatías Congénitas/genética , Proteína Homeótica Nkx-2.5/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Corazón/crecimiento & desarrollo , Humanos , Ratones , Miocitos Cardíacos/citología , ARN/aislamiento & purificación
17.
PLoS One ; 14(9): e0222946, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31560727

RESUMEN

Human embryonic stem cell (hESC)-derived skeletal muscle progenitors (SMP)-defined as PAX7-expressing cells with myogenic potential-can provide an abundant source of donor material for muscle stem cell therapy. As in vitro myogenesis is decoupled from in vivo timing and 3D-embryo structure, it is important to characterize what stage or type of muscle is modeled in culture. Here, gene expression profiling is analyzed in hESCs over a 50 day skeletal myogenesis protocol and compared to datasets of other hESC-derived skeletal muscle and adult murine satellite cells. Furthermore, day 2 cultures differentiated with high or lower concentrations of CHIR99021, a GSK3A/GSK3B inhibitor, were contrasted. Expression profiling of the 50 day time course identified successively expressed gene subsets involved in mesoderm/paraxial mesoderm induction, somitogenesis, and skeletal muscle commitment/formation which could be regulated by a putative cascade of transcription factors. Initiating differentiation with higher CHIR99021 concentrations significantly increased expression of MSGN1 and TGFB-superfamily genes, notably NODAL, resulting in enhanced paraxial mesoderm and reduced ectoderm/neuronal gene expression. Comparison to adult satellite cells revealed that genes expressed in 50-day cultures correlated better with those expressed by quiescent or early activated satellite cells, which have the greatest therapeutic potential. Day 50 cultures were similar to other hESC-derived skeletal muscle and both expressed known and novel SMP surface proteins. Overall, a putative cascade of transcription factors has been identified which regulates four stages of myogenesis. Subsets of these factors were upregulated by high CHIR99021 or their binding sites were significantly over-represented during SMP activation, ranging from quiescent to late-activated stages. This analysis serves as a resource to further study the progression of in vitro skeletal myogenesis and could be mined to identify novel markers of pluripotent-derived SMPs or regulatory transcription/growth factors. Finally, 50-day hESC-derived SMPs appear similar to quiescent/early activated satellite cells, suggesting they possess therapeutic potential.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Perfilación de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Músculo Esquelético/citología , Piridinas/farmacología , Pirimidinas/farmacología , Células Satélite del Músculo Esquelético/metabolismo
18.
Mol Cell Biol ; 22(12): 4011-9, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12024015

RESUMEN

Transcription of the Saccharomyces cerevisiae ARG1 gene is under the control of both positive and negative elements. Activation of the gene in minimal medium is induced by Gcn4. Repression occurs in the presence of arginine and requires the ArgR/Mcm1 complex that binds to two upstream arginine control (ARC) elements. With the recent finding that the E2 ubiquitin conjugase Rad6 modifies histone H2B, we examined the role of Rad6 in the regulation of ARG1 transcription. We find that Rad6 is required for repression of ARG1 in rich medium, with expression increased approximately 10-fold in a rad6 null background. Chromatin immunoprecipitation analysis indicates increased binding of TATA-binding protein in the absence of Rad6. The active-site cysteine of Rad6 is required for repression, implicating ubiquitination in the process. The effects of Rad6 at ARG1 involve two components. In one of these, histone H2B is the likely target for ubiquitination by Rad6, since a strain expressing histone H2B with the principal ubiquitination site converted from lysine to arginine shows a fivefold relief of repression. The second component requires Ubr1 and thus likely the pathway of N-end rule degradation. Through the analysis of promoter constructs with ARC deleted and an arg80 rad6 double mutant, we show that Rad6 repression is mediated through the ArgR/Mcm1 complex. In addition, analysis of an ada2 rad6 deletion strain indicated that the SAGA acetyltransferase complex and Rad6 act in the same pathway to repress ARG1 in rich medium.


Asunto(s)
Argininosuccinato Sintasa/genética , Proteínas de Unión al ADN , Ligasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol) , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Ubiquitina-Proteína Ligasas , Arginina , Argininosuccinato Sintasa/metabolismo , Secuencia de Bases , Medios de Cultivo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Ligasas/genética , Proteína 1 de Mantenimiento de Minicromosoma/genética , Proteína 1 de Mantenimiento de Minicromosoma/metabolismo , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Enzimas Ubiquitina-Conjugadoras , Levaduras/genética , Levaduras/metabolismo
19.
Stem Cell Reports ; 9(4): 1139-1151, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28943254

RESUMEN

Satellite cells are skeletal-muscle-specific stem cells that are activated by injury to proliferate, differentiate, and fuse to enable repair. SOX7, a member of the SRY-related HMG-box family of transcription factors is expressed in quiescent satellite cells. To elucidate SOX7 function in skeletal muscle, we knocked down Sox7 expression in embryonic stem cells and primary myoblasts and generated a conditional knockout mouse in which Sox7 is excised in PAX3+ cells. Loss of Sox7 in embryonic stem cells reduced Pax3 and Pax7 expression. In vivo, conditional knockdown of Sox7 reduced the satellite cell population from birth, reduced myofiber caliber, and impaired regeneration after acute injury. Although Sox7-deficient primary myoblasts differentiated normally, impaired myoblast fusion and increased sensitivity to apoptosis in culture and in vivo were observed. Taken together, these results indicate that SOX7 is dispensable for myogenesis but is necessary to promote satellite cell development and survival.


Asunto(s)
Diferenciación Celular/genética , Autorrenovación de las Células/genética , Factores de Transcripción SOXF/genética , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Animales , Línea Celular , Supervivencia Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Expresión Génica , Técnicas de Inactivación de Genes , Ratones , Ratones Noqueados , Desarrollo de Músculos , Fibras Musculares Esqueléticas/fisiología , Mioblastos/citología , Mioblastos/metabolismo , Regeneración
20.
Sci Rep ; 6: 21300, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26892269

RESUMEN

Physical forces arising in the extra-cellular environment have a profound impact on cell fate and gene regulation; however the underlying biophysical mechanisms that control this sensitivity remain elusive. It is hypothesized that gene expression may be influenced by the physical deformation of the nucleus in response to force. Here, using 3T3s as a model, we demonstrate that extra-cellular forces cause cell nuclei to rapidly deform (<1 s) preferentially along their shorter nuclear axis, in an anisotropic manner. Nuclear anisotropy is shown to be regulated by the cytoskeleton within intact cells, with actin and microtubules resistant to orthonormal strains. Importantly, nuclear anisotropy is intrinsic, and observed in isolated nuclei. The sensitivity of this behaviour is influenced by chromatin organization and lamin-A expression. An anisotropic response to force was also highly conserved amongst an array of examined nuclei from differentiated and undifferentiated cell types. Although the functional purpose of this conserved material property remains elusive, it may provide a mechanism through which mechanical cues in the microenvironment are rapidly transmitted to the genome.


Asunto(s)
Núcleo Celular/metabolismo , Mecanotransducción Celular/fisiología , Modelos Teóricos , Estrés Mecánico , Células 3T3 , Animales , Anisotropía , Citoesqueleto/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA