Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BJU Int ; 125(1): 17-27, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31622020

RESUMEN

Three-dimensional (3D) printing or additive manufacturing is a new technology that has seen rapid development in recent years with decreasing costs. 3D printing allows the creation of customised, finely detailed constructs. Technological improvements, increased printer availability, decreasing costs, improved cell culture techniques, and biomaterials have enabled complex, novel and individualised medical treatments to be developed. Although the long-term goal of printing biocompatible organs has not yet been achieved, major advances have been made utilising 3D printing in biomedical engineering. In this literature review, we discuss the role of 3D printing in relation to urological surgery. We highlight the common printing methods employed and show examples of clinical urological uses. Currently, 3D printing can be used in urology for education of trainees and patients, surgical planning, creation of urological equipment, and bioprinting. In this review, we summarise the current applications of 3D-printing technology in these areas of urology.


Asunto(s)
Bioimpresión , Impresión Tridimensional , Procedimientos Quirúrgicos Urológicos/métodos , Urología/educación , Humanos
2.
Biomed Eng Online ; 19(1): 55, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611431

RESUMEN

BACKGROUND: Three-dimensional (3D) printing is a promising technology, but the limitations are often poorly understood. We compare different 3D printing methods with conventional machining techniques in manufacturing meatal urethral dilators which were recently removed from the Australian market. METHODS: A prototype dilator was 3D printed vertically orientated on a low-cost fused deposition modelling (FDM) 3D printer in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). It was also 3D printed horizontally orientated in ABS on a high-end FDM 3D printer with soluble support material, as well as on an SLS 3D printer in medical nylon. The dilator was also machined in stainless steel using a lathe. All dilators were tested mechanically in a custom rig by hanging calibrated weights from the handle until the dilator snapped. RESULTS: The horizontally printed ABS dilator experienced failure at a greater load than the vertically printed PLA and ABS dilators, respectively (503 g vs 283 g vs 163 g, p < 0.001). The SLS nylon dilator and machined steel dilator did not fail. The steel dilator is the most expensive with a quantity of five at 98 USD each, but this decreases to 30 USD each for a quantity of 1000. In contrast, the cost for the SLS dilator is 33 USD each for five and 27 USD each for 1000. CONCLUSIONS: Low-cost FDM 3D printing is not a replacement for conventional manufacturing. 3D printing is best used for patient-specific parts, prototyping or manufacturing complex parts that have additional functionality that cannot otherwise be achieved.


Asunto(s)
Dilatación/instrumentación , Diseño de Equipo/métodos , Impresión Tridimensional , Uretra/cirugía , Pruebas Mecánicas
3.
Polymers (Basel) ; 14(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35745911

RESUMEN

The adoption of additive manufacturing (AM) techniques into the medical space has revolutionised tissue engineering. Depending upon the tissue type, specific AM approaches are capable of closely matching the physical and biological tissue attributes, to guide tissue regeneration. For hard tissue such as bone, powder bed fusion (PBF) techniques have significant potential, as they are capable of fabricating materials that can match the mechanical requirements necessary to maintain bone functionality and support regeneration. This review focuses on the PBF techniques that utilize laser sintering for creating scaffolds for bone tissue engineering (BTE) applications. Optimal scaffold requirements are explained, ranging from material biocompatibility and bioactivity, to generating specific architectures to recapitulate the porosity, interconnectivity, and mechanical properties of native human bone. The main objective of the review is to outline the most common materials processed using PBF in the context of BTE; initially outlining the most common polymers, including polyamide, polycaprolactone, polyethylene, and polyetheretherketone. Subsequent sections investigate the use of metals and ceramics in similar systems for BTE applications. The last section explores how composite materials can be used. Within each material section, the benefits and shortcomings are outlined, including their mechanical and biological performance, as well as associated printing parameters. The framework provided can be applied to the development of new, novel materials or laser-based approaches to ultimately generate bone tissue analogues or for guiding bone regeneration.

4.
Front Surg ; 8: 626143, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959629

RESUMEN

Patients often opt for implantation of testicular prostheses following orchidectomy for cancer or torsion. Recipients of testicular prostheses report issues regarding firmness, shape, size, and position, aspects of which relate to current limitations of silicone materials used and manufacturing methods for soft prostheses. We aim to create a 3D printable testicular prosthesis which mimics the natural shape and stiffness of a human testicle using a lattice infill structure. Porous testicular prostheses were engineered with relative densities from 0.1 to 0.9 using a repeating cubic unit cell lattice inside an anatomically accurate testicle 3D model. These models were printed using a multi-jetting process with an elastomeric material and compared with current market prostheses using shore hardness tests. Additionally, standard sized porous specimens were printed for compression testing to verify and match the stiffness to human testicle elastic modulus (E-modulus) values from literature. The resulting 3D printed testicular prosthesis of relative density between 0.3 and 0.4 successfully achieved a reduction of its bulk compressive E-modulus from 360 KPa to a human testicle at 28 Kpa. Additionally, this is the first study to quantitatively show that current commercial testicular prostheses are too firm compared to native tissue. 3D printing allows us to create metamaterials that match the properties of human tissue to create customisable patient specific prostheses. This method expands the use cases for existing biomaterials by tuning their properties and could be applied to other implants mimicking native tissues.

5.
J Vis Exp ; (157)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32176207

RESUMEN

Three-dimensional (3D) printing is an increasingly popular manufacturing technique that allows highly complex objects to be fabricated with no retooling costs. This increasing popularity is partly driven by falling barriers to entry such as system set-up costs and ease of operation. The following protocol presents the design and construction of an Additive Manufacturing Melt Extrusion (ADDME) 3D printer for the fabrication of custom parts and components. ADDME has been designed with a combination of 3D-printed, laser-cut, and online-sourced components. The protocol is arranged into easy-to-follow sections, with detailed diagrams and parts lists under the headings of framing, y-axis and bed, x-axis, extrusion, electronics, and software. The performance of ADDME is evaluated through extrusion testing and 3D printing of complex objects using viscous cream, chocolate, and Pluronic F-127 (a model for bioinks). The results indicate that ADDME is a capable platform for the fabrication of materials and constructs for use in a wide range of industries. The combination of detailed diagrams and video content facilitates access to low-cost, easy-to-operate equipment for individuals interested in 3D printing of complex objects from a wide range of materials.


Asunto(s)
Impresión Tridimensional/instrumentación , Electrónica , Manipulación de Alimentos , Humanos , Poloxámero , Impresión Tridimensional/economía
6.
Sci Rep ; 10(1): 10004, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561811

RESUMEN

Three-dimensional (3D) printed prostate cancer models are an emerging adjunct for urological surgical planning and patient education, however published methods are costly which limits their translation into clinical practice. Multi-colour extrusion fused deposition modelling (FDM) can be used to create 3D prostate cancer models of a quality comparable to more expensive techniques at a fraction of the cost. Three different 3D printing methods were used to create the same 3D prostate model: FDM, colour jet printing (CJP) and material jetting (MJ), with a calculated cost per model of USD 20, USD 200 and USD 250 respectively. When taking into account the cost, the FDM prostate models are the most preferred 3D printing method by surgeons. This method could be used to manufacture low-cost 3D printed models across other medical disciplines.


Asunto(s)
Modelos Anatómicos , Impresión Tridimensional , Neoplasias de la Próstata/patología , Humanos , Masculino , Neoplasias de la Próstata/cirugía
7.
Sci Rep ; 10(1): 11453, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651436

RESUMEN

Craniofacial prostheses are commonly used to restore aesthetics for those suffering from malformed, damaged, or missing tissue. Traditional fabrication is costly, uncomfortable for the patient, and laborious; involving several hours of hand-crafting by a prosthetist, with the results highly dependent on their skill level. In this paper, we present an advanced manufacturing framework employing three-dimensional scanning, computer-aided design, and computer-aided manufacturing to efficiently fabricate patient-specific ear prostheses. Three-dimensional scans were taken of ears of six participants using a structured light scanner. These were processed using software to model the prostheses and 3-part negative moulds, which were fabricated on a low-cost desktop 3D printer, and cast with silicone to produce ear prostheses. The average cost was approximately $3 for consumables and $116 for 2 h of labour. An injection method with smoothed 3D printed ABS moulds was also developed at a cost of approximately $155 for consumables and labour. This contrasts with traditional hand-crafted prostheses which range from $2,000 to $7,000 and take around 14 to 15 h of labour. This advanced manufacturing framework provides potential for non-invasive, low cost, and high-accuracy alternative to current techniques, is easily translatable to other prostheses, and has potential for further cost reduction.


Asunto(s)
Diseño Asistido por Computadora/economía , Oído/fisiología , Audífonos/economía , Prótesis e Implantes/economía , Humanos , Impresión Tridimensional , Diseño de Prótesis/economía , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA