Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Chembiochem ; 25(1): e202300625, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37830893

RESUMEN

As the world moves towards net-zero carbon emissions, the development of sustainable chemical manufacturing processes is essential. Within manufacturing, purification by distillation is often used, however this process is energy intensive and methods that could obviate or reduce its use are desirable. Developed herein is an alternative, oxidative biocatalytic approach that enables purification of alkyl monoglucosides (essential bio-based surfactant components). Implementing an immobilised engineered alcohol oxidase, a long-chain alcohol by-product derived from alkyl monoglucoside synthesis (normally removed by distillation) is selectively oxidised to an aldehyde, conjugated to an amine resin and then removed by simple filtration. This affords recovery of the purified alkyl monoglucoside. The approach lays a blueprint for further development of sustainable alkylglycoside purification using biocatalysis and, importantly, for refining other important chemical feedstocks that currently rely on distillation.


Asunto(s)
Alcoholes , Aldehídos , Oxidación-Reducción , Biocatálisis
2.
Chemistry ; 29(1): e202202599, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36134621

RESUMEN

Infection of host cells by SARS-CoV-2 begins with recognition by the virus S (spike) protein of cell surface heparan sulfate (HS), tethering the virus to the extracellular matrix environment, and causing the subunit S1-RBD to undergo a conformational change into the 'open' conformation. These two events promote the binding of S1-RBD to the angiotensin converting enzyme 2 (ACE2) receptor, a preliminary step toward viral-cell membrane fusion. Combining ligand-based NMR spectroscopy with molecular dynamics, oligosaccharide analogues were used to explore the interactions between S1-RBD of SARS CoV-2 and HS, revealing several low-specificity binding modes and previously unidentified potential sites for the binding of extended HS polysaccharide chains. The evidence for multiple binding modes also suggest that highly specific inhibitors will not be optimal against protein S but, rather, diverse HS-based structures, characterized by high affinity and including multi-valent compounds, may be required.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Unión Proteica , Dominios Proteicos , Simulación de Dinámica Molecular , Polisacáridos , Sitios de Unión , Glicoproteína de la Espiga del Coronavirus/química
3.
Mar Drugs ; 19(4)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916819

RESUMEN

Only palliative therapeutic options exist for the treatment of Alzheimer's Disease; no new successful drug candidates have been developed in over 15 years. The widely used clinical anticoagulant heparin has been reported to exert beneficial effects through multiple pathophysiological pathways involved in the aetiology of Alzheimer's Disease, for example, amyloid peptide production and clearance, tau phosphorylation, inflammation and oxidative stress. Despite the therapeutic potential of heparin as a multi-target drug for Alzheimer's disease, the repurposing of pharmaceutical heparin is proscribed owing to the potent anticoagulant activity of this drug. Here, a heterogenous non-anticoagulant glycosaminoglycan extract, obtained from the shrimp Litopenaeus vannamei, was found to inhibit the key neuronal ß-secretase, BACE1, displaying a more favorable therapeutic ratio compared to pharmaceutical heparin when anticoagulant activity is considered.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Glicosaminoglicanos/farmacología , Penaeidae/metabolismo , Inhibidores de Proteasas/farmacología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Estabilidad de Enzimas , Glicosaminoglicanos/aislamiento & purificación , Humanos , Tiempo de Tromboplastina Parcial , Inhibidores de Proteasas/aislamiento & purificación , Tiempo de Protrombina
4.
Mar Drugs ; 17(5)2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31100859

RESUMEN

Therapeutic options for Alzheimer's disease, the most common form of dementia, are currently restricted to palliative treatments. The glycosaminoglycan heparin, widely used as a clinical anticoagulant, has previously been shown to inhibit the Alzheimer's disease-relevant ß-secretase 1 (BACE1). Despite this, the deployment of pharmaceutical heparin for the treatment of Alzheimer's disease is largely precluded by its potent anticoagulant activity. Furthermore, ongoing concerns regarding the use of mammalian-sourced heparins, primarily due to prion diseases and religious beliefs hinder the deployment of alternative heparin-based therapeutics. A marine-derived, heparan sulphate-containing glycosaminoglycan extract, isolated from the crab Portunus pelagicus, was identified to inhibit human BACE1 with comparable bioactivity to that of mammalian heparin (IC50 = 1.85 µg mL-1 (R2 = 0.94) and 2.43 µg mL-1 (R2 = 0.93), respectively), while possessing highly attenuated anticoagulant activities. The results from several structural techniques suggest that the interactions between BACE1 and the extract from P. pelagicus are complex and distinct from those of heparin.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Braquiuros/química , Activación Enzimática/efectos de los fármacos , Glicosaminoglicanos/farmacología , Animales , Anticoagulantes/química , Anticoagulantes/aislamiento & purificación , Anticoagulantes/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Glicosaminoglicanos/química , Glicosaminoglicanos/aislamiento & purificación
5.
Biochem Soc Trans ; 46(4): 919-929, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30026370

RESUMEN

Glycosaminoglycans (GAGs), present in the extracellular matrix, are exploited by numerous, distinct microbes for cellular attachment, adhesion, invasion and evasion of the host immune system. Glycosaminoglycans, including the widely used, clinical anticoagulant heparin and semi-synthetic analogues thereof, have been reported to inhibit and disrupt interactions between microbial proteins and carbohydrates present on the surface of host cells. However, the anticoagulant properties of unmodified, pharmaceutical heparin preparations preclude their capabilities as therapeutics for infectious disease states. Here, unique Glycosaminoglycan-like saccharides from various, distinct marine species are reported for their potential use as therapeutics against infectious diseases; many of which possess highly attenuated anticoagulant activities, while retaining significant antimicrobial properties.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/uso terapéutico , Organismos Acuáticos/química , Enfermedades Transmisibles/tratamiento farmacológico , Glicosaminoglicanos/química , Glicosaminoglicanos/uso terapéutico , Agua de Mar/química , Animales , Antiinfecciosos/farmacología , Anticoagulantes/farmacología , Glicosaminoglicanos/farmacología , Heparina/farmacología , Humanos
6.
Biochem Soc Trans ; 46(4): 789-796, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29934302

RESUMEN

The leishmaniases are a group of neglected tropical diseases caused by parasites from the Leishmania genus. More than 20 Leishmania species are responsible for human disease, causing a broad spectrum of symptoms ranging from cutaneous lesions to a fatal visceral infection. There is no single safe and effective approach to treat these diseases and resistance to current anti-leishmanial drugs is emerging. New drug targets need to be identified and validated to generate novel treatments. Host heparan sulfates (HSs) are abundant, heterogeneous polysaccharides displayed on proteoglycans that bind various ligands, including cell surface proteins expressed on Leishmania promastigote and amastigote parasites. The fine chemical structure of HS is formed by a plethora of specific enzymes during biosynthesis, with various positions (N-, 2-O-, 6-O- and 3-O-) on the carbon sugar backbone modified with sulfate groups. Post-biosynthesis mechanisms can further modify the sulfation pattern or size of the polysaccharide, altering ligand affinity to moderate biological functions. Chemically modified heparins used to mimic the heterogeneous nature of HS influence the affinity of different Leishmania species, demonstrating the importance of specific HS chemical sequences in parasite interaction. However, the endogenous structures of host HSs that might interact with Leishmania parasites during host invasion have not been elucidated, nor has the role of HSs in host-parasite biology. Decoding the structure of HSs on target host cells will increase understanding of HS/parasite interactions in leishmaniasis, potentiating identification of new opportunities for the development of novel treatments.


Asunto(s)
Heparitina Sulfato/fisiología , Leishmania/metabolismo , Leishmania/patogenicidad , Macrófagos/parasitología , Animales , Antiprotozoarios/uso terapéutico , Moléculas de Adhesión Celular/metabolismo , Proteoglicanos de Heparán Sulfato/biosíntesis , Proteoglicanos de Heparán Sulfato/metabolismo , Heparina/metabolismo , Interacciones Huésped-Parásitos , Humanos , Leishmaniasis/tratamiento farmacológico , Unión Proteica , Proteínas Protozoarias/metabolismo
7.
Biochem Soc Trans ; 46(3): 609-617, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29678952

RESUMEN

Viruses exploit host metabolic and defence machinery for their own replication. The flaviviruses, which include Dengue (DENV), Yellow Fever (YFV), Japanese Encephalitis (JEV), West Nile (WNV) and Zika (ZIKV) viruses, infect a broad range of hosts, cells and tissues. Flaviviruses are largely transmitted by mosquito bites and humans are usually incidental, dead-end hosts, with the notable exceptions of YFV, DENV and ZIKV. Infection by flaviviruses elicits cellular responses including cell death via necrosis, pyroptosis (involving inflammation) or apoptosis (which avoids inflammation). Flaviviruses exploit these mechanisms and subvert them to prolong viral replication. The different effects induced by DENV, WNV, JEV and ZIKV are reviewed. Host cell surface proteoglycans (PGs) bearing glycosaminoglycan (GAG) polysaccharides - heparan/chondroitin sulfate (HS/CS) - are involved in initial flavivirus attachment and during the expression of non-structural viral proteins play a role in disease aetiology. Recent work has shown that ZIKV-infected cells are protected from cell death by exogenous heparin (a GAG structurally similar to host cell surface HS), raising the possibility of further subtle involvement of HS PGs in flavivirus disease processes. The aim of this review is to synthesize information regarding DENV, WNV, JEV and ZIKV from two areas that are usually treated separately: the response of host cells to infection by flaviviruses and the involvement of cell surface GAGs in response to those infections.


Asunto(s)
Muerte Celular , Infecciones por Flaviviridae/fisiopatología , Flaviviridae/fisiología , Interacciones Huésped-Patógeno , Animales , Infecciones por Flaviviridae/inmunología , Infecciones por Flaviviridae/transmisión , Infecciones por Flaviviridae/virología , Humanos , Mosquitos Vectores , Replicación Viral
8.
Glycoconj J ; 34(3): 405-410, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27523650

RESUMEN

Studying polysaccharide-protein interactions under physiological conditions by conventional techniques is challenging. Ideally, macromolecules could be followed by both in vitro spectroscopy experiments as well as in tissues using microscopy, to enable a proper comparison of results over these different scales but, often, this is not feasible. The cell surface and extracellular matrix polysaccharides, glycosaminoglycans (GAGs) lack groups that can be detected selectively in the biological milieu. The introduction of 19F labels into GAG polysaccharides is explored and the interaction of a labelled GAG with the heparin-binding protein, antithrombin, employing 19F NMR spectroscopy is followed. Furthermore, the ability of 19F labelled GAGs to be imaged using CARS microscopy is demonstrated. 19F labelled GAGs enable both 19F NMR protein-GAG binding studies in solution at the molecular level and non-linear microscopy at a microscopic scale to be conducted on the same material, essentially free of background signals.


Asunto(s)
Imagen por Resonancia Magnética con Fluor-19/métodos , Flúor/química , Glicosaminoglicanos/química , Sondas Moleculares/química , Coloración y Etiquetado/métodos , Acetilación , Antitrombinas/química , Glicosaminoglicanos/análisis , Halogenación , Espectroscopía de Resonancia Magnética/métodos , Sondas Moleculares/análisis , Unión Proteica , Soluciones , Espectrometría Raman/métodos
9.
Nat Commun ; 15(1): 1326, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351061

RESUMEN

Heparan sulfate (HS) polysaccharides are major constituents of the extracellular matrix, which are involved in myriad structural and signaling processes. Mature HS polysaccharides contain complex, non-templated patterns of sulfation and epimerization, which mediate interactions with diverse protein partners. Complex HS modifications form around initial clusters of glucosamine-N-sulfate (GlcNS) on nascent polysaccharide chains, but the mechanistic basis underpinning incorporation of GlcNS itself into HS remains unclear. Here, we determine cryo-electron microscopy structures of human N-deacetylase-N-sulfotransferase (NDST)1, the bifunctional enzyme primarily responsible for initial GlcNS modification of HS. Our structures reveal the architecture of both NDST1 deacetylase and sulfotransferase catalytic domains, alongside a non-catalytic N-terminal domain. The two catalytic domains of NDST1 adopt a distinct back-to-back topology that limits direct cooperativity. Binding analyses, aided by activity-modulating nanobodies, suggest that anchoring of the substrate at the sulfotransferase domain initiates the NDST1 catalytic cycle, providing a plausible mechanism for cooperativity despite spatial domain separation. Our data shed light on key determinants of NDST1 activity, and describe tools to probe NDST1 function in vitro and in vivo.


Asunto(s)
Heparitina Sulfato , Sulfotransferasas , Humanos , Microscopía por Crioelectrón , Heparitina Sulfato/metabolismo , Dominio Catalítico , Sulfotransferasas/metabolismo , Matriz Extracelular/metabolismo
10.
J Biol Chem ; 287(47): 40061-73, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23019343

RESUMEN

The functions of a large number (>435) of extracellular regulatory proteins are controlled by their interactions with heparan sulfate (HS). In the case of fibroblast growth factors (FGFs), HS binding determines their transport between cells and is required for the assembly of high affinity signaling complexes with their cognate FGF receptor. However, the specificity of the interaction of FGFs with HS is still debated. Here, we use a panel of FGFs (FGF-1, FGF-2, FGF-7, FGF-9, FGF-18, and FGF-21) spanning five FGF subfamilies to probe their specificities for HS at different levels as follows: binding parameters, identification of heparin-binding sites (HBSs) in the FGFs, changes in their secondary structure caused by heparin binding and structures in the sugar required for binding. For interaction with heparin, the FGFs exhibit K(D) values varying between 38 nM (FGF-18) and 620 nM (FGF-9) and association rate constants spanning over 20-fold (FGF-1, 2,900,000 M(-1) s(-1) and FGF-9, 130,000 M(-1) s(-1)). The canonical HBS in FGF-1, FGF-2, FGF-7, FGF-9, and FGF-18 differs in its size, and these FGFs have a different complement of secondary HBS, ranging from none (FGF-9) to two (FGF-1). Differential scanning fluorimetry identified clear preferences in these FGFs for distinct structural features in the polysaccharide. These data suggest that the differences in heparin-binding sites in both the protein and the sugar are greatest between subfamilies and may be more restricted within a FGF subfamily in accord with the known conservation of function within FGF subfamilies.


Asunto(s)
Factores de Crecimiento de Fibroblastos/química , Heparina/química , Animales , Sitios de Unión , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Heparina/genética , Heparina/metabolismo , Humanos , Unión Proteica/fisiología , Ratas , Relación Estructura-Actividad
11.
ACS Cent Sci ; 9(3): 381-392, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36968539

RESUMEN

Heparin is a polydisperse, heterogeneous polysaccharide of the glycosaminoglycan (GAG) class that has found widespread clinical use as a potent anticoagulant and is classified as an essential medicine by the World Health Organization. The importance of rigorous monitoring and quality control of pharmaceutical heparin was highlighted in 2008, when the existing regulatory procedures failed to identify a life-threatening adulteration of pharmaceutical heparin with oversulfated chondroitin sulfate (OSCS). The subsequent contamination crisis resulted in the exploration of alternative approaches for which the use of multidimensional nuclear magnetic resonance (NMR) spectroscopy techniques and multivariate analysis emerged as the gold standard. This procedure is, however, technically demanding and requires access to expensive equipment. An alternative approach, utilizing attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) combined with multivariate analysis, has been developed. The method described enables the differentiation of diverse GAG samples, the classification of samples of distinct species provenance, and the detection of both established heparin contaminants and alien polysaccharides. This methodology has sensitivity comparable to that of NMR and can facilitate the rapid, cost-effective monitoring and analysis of pharmaceutical heparin. It is therefore suitable for future deployment throughout the supply chain.

12.
Carbohydr Res ; 525: 108747, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36773398

RESUMEN

The clinically important anticoagulant heparin, a member of the glycosaminoglycan family of carbohydrates that is extracted predominantly from porcine and bovine tissue sources, has previously been shown to inhibit the ß-site amyloid precursor protein cleaving enzyme 1 (BACE-1), a key drug target in Alzheimer's Disease. In addition, heparin has been shown to exert favourable bioactivities through a number of pathophysiological pathways involved in the disease processes of Alzheimer's Disease including inflammation, oxidative stress, tau phosphorylation and amyloid peptide generation. Despite the multi-target potential of heparin as a therapeutic option for Alzheimer's disease, the repurposing of this medically important biomolecule has to-date been precluded by its high anticoagulant potential. An alternative source to mammalian-derived glycosaminoglycans are those extracted from marine environments and these have been shown to display an expanded repertoire of sequence-space and heterogeneity compared to their mammalian counterparts. Furthermore, many marine-derived glycosaminoglycans appear to retain favourable bioactivities, whilst lacking the high anticoagulant potential of their mammalian counterparts. Here we describe a sulphated, marine-derived glycosaminoglycan extract from the Atlantic Sea Scallop, Placopecten magellanicus that displays high inhibitory potential against BACE-1 (IC50 = 4.8 µg.mL-1) combined with low anticoagulant activity; 25-fold less than that of heparin. This extract possesses a more favourable therapeutic profile compared to pharmaceutical heparin of mammalian provenance and is composed of a mixture of heparan sulphate (HS), with a high content of 6-sulphated N-acetyl glucosamine (64%), and chondroitin sulphate.


Asunto(s)
Enfermedad de Alzheimer , Pectinidae , Animales , Bovinos , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/uso terapéutico , Anticoagulantes/química , Glicosaminoglicanos/farmacología , Heparina/farmacología , Mamíferos/metabolismo , Pectinidae/metabolismo , Porcinos , Secretasas de la Proteína Precursora del Amiloide
13.
Anal Methods ; 15(11): 1461-1469, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36876452

RESUMEN

The fine structure of heparan sulfate (HS), the glycosaminoglycan polysaccharide component of cell surface and extracellular matrix HS proteoglycans, coordinates the complex cell signalling processes that control homeostasis and drive development in multicellular animals. In addition, HS is involved in the infection of mammals by viruses, bacteria and parasites. The current detection limit for fluorescently labelled HS disaccharides (low femtomole; 10-15 mol), has effectively hampered investigations of HS composition in small, functionally-relevant populations of cells and tissues that may illuminate the structural requirements for infection and other biochemical processes. Here, an ultra-high sensitivity method is described that utilises a combination of reverse-phase HPLC, with tetraoctylammonium bromide (TOAB) as the ion-pairing reagent and laser-induced fluorescence detection of BODIPY-FL-labelled disaccharides. The method provides an unparalleled increase in the sensitivity of detection by ∼six orders of magnitude, enabling detection in the zeptomolar range (∼10-21 moles; <1000 labelled molecules). This facilitates determination of HS disaccharide compositional analysis from minute samples of selected tissues, as demonstrated by analysis of HS isolated from the midguts of Anopheles gambiae mosquitoes that was achieved without approaching the limit of detection.


Asunto(s)
Culicidae , Disacáridos , Animales , Disacáridos/análisis , Disacáridos/química , Cromatografía Líquida de Alta Presión/métodos , Heparitina Sulfato/análisis , Heparitina Sulfato/química , Mamíferos
14.
RSC Chem Biol ; 4(11): 865-870, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37920392

RESUMEN

Upon undergoing mucoid conversion within the lungs of cystic fibrosis patients, the pathogenic bacterium Pseudomonas aeruginosa synthesises copious quantities of the virulence factor and exopolysaccharide alginate. The enzyme guanosine diphosphate mannose dehydrogenase (GMD) catalyses the rate-limiting step and irreversible formation of the alginate sugar nucleotide building block, guanosine diphosphate mannuronic acid. Since there is no corresponding enzyme in humans, strategies that could prevent its mechanism of action could open a pathway for new and selective inhibitors to disrupt bacterial alginate production. Using virtual screening, a library of 1447 compounds within the Known Drug Space parameters were evaluated against the GMD active site using the Glide, FRED and GOLD algorithms. Compound hit evaluation with recombinant GMD refined the panel of 40 potential hits to 6 compounds which reduced NADH production in a time-dependent manner; of which, an usnic acid derivative demonstrated inhibition six-fold stronger than a previously established sugar nucleotide inhibitor, with an IC50 value of 17 µM. Further analysis by covalent docking and mass spectrometry confirm a single site of GMD alkylation.

15.
ACS Cent Sci ; 8(5): 527-545, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35647275

RESUMEN

Heparan sulfate (HS) is a cell surface polysaccharide recently identified as a coreceptor with the ACE2 protein for the S1 spike protein on SARS-CoV-2 virus, providing a tractable new therapeutic target. Clinically used heparins demonstrate an inhibitory activity but have an anticoagulant activity and are supply-limited, necessitating alternative solutions. Here, we show that synthetic HS mimetic pixatimod (PG545), a cancer drug candidate, binds and destabilizes the SARS-CoV-2 spike protein receptor binding domain and directly inhibits its binding to ACE2, consistent with molecular modeling identification of multiple molecular contacts and overlapping pixatimod and ACE2 binding sites. Assays with multiple clinical isolates of SARS-CoV-2 virus show that pixatimod potently inhibits the infection of monkey Vero E6 cells and physiologically relevant human bronchial epithelial cells at safe therapeutic concentrations. Pixatimod also retained broad potency against variants of concern (VOC) including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, in a K18-hACE2 mouse model, pixatimod significantly reduced SARS-CoV-2 viral titers in the upper respiratory tract and virus-induced weight loss. This demonstration of potent anti-SARS-CoV-2 activity tolerant to emerging mutations establishes proof-of-concept for targeting the HS-Spike protein-ACE2 axis with synthetic HS mimetics and provides a strong rationale for clinical investigation of pixatimod as a potential multimodal therapeutic for COVID-19.

16.
Analyst ; 136(7): 1380-9, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21279243

RESUMEN

In contrast to most pharmaceutical agents, the major anticoagulant agent, heparin, lacks a uniquely defined chemical structure. It is an inherently structurally varying, poly-disperse polymer, rendering quality control problematic. Structural modifications introduced during manufacture and the presence of possible contaminants are dangers. The comparison of any heparin test sample to a library of bona fide, but intrinsically variable heparins, is limited fundamentally to measuring the degree of similarity between them. A general approach for constructing a suitable illustrative heparin library employing (1)H NMR and multivariate analysis, is proposed and examples shown. Heparin samples contaminated with non-N-acetylated, persulfated, non-glycosaminoglycan carbohydrates (10%) were detected, some of which would not be easily detected under current regulatory guidelines. The ability to identify contaminated heparin is fundamentally dependent on the contents of the library, which should contain all the 'normal' variability within 'heparin'. Oversulfated chondroitin sulfate can be detected (∼5%) (using components 1 and 2, but is detectable at 3% using additional components, e.g. 1 and 5) analysing the full spectrum and at <1% if only the N-acetyl region is used. Signals arising from oxidation during the manufacturing processes can also be found. The design, properties and limitations of this approach are discussed. Assembly of such a library of market heparin can be termed the 'Current Statistical Definition of Heparin' (CSDH) and will form the basis of future quantitative methods.


Asunto(s)
Heparina/química , Espectroscopía de Resonancia Magnética/métodos , Sulfatos de Condroitina/química , Análisis Multivariante , Oxidación-Reducción , Análisis de Componente Principal , Bibliotecas de Moléculas Pequeñas/química
17.
Analyst ; 136(7): 1390-8, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21279244

RESUMEN

A novel application of two-dimensional correlation analysis has been employed to filter (1)H NMR heparin spectra distinguishing acceptable natural variation and the presence of foreign species. Analysis of contaminated heparin samples, compared to a dataset of accepted heparin samples using two-dimensional correlation spectroscopic analysis of their 1-dimensional (1)H NMR spectra, allowed the spectral features of contaminants to be recovered with high sensitivity, without having to resort to more complicated NMR experiments. Contaminants, which exhibited features distinct from those of heparin and those with features normally hidden within the spectral mass of heparin could be distinguished readily. A heparin sample which had been pre-mixed with a known contaminant, oversulfated chondroitin sulfate (OSCS), was tested against the heparin reference library. It was possible to recover the (1)H NMR spectrum of the OSCS component through difference 2D-COS power spectrum analysis of as little as 0.25% (w/w) with ease, and of 2% (w/w) for more challenging contaminants, whose NMR signals fell under those of heparin. The approach shows great promise for the quality control of heparin and provides the basis for greatly improved regulatory control for the analysis of heparin, as well as other intrinsically heterogeneous and varied products.


Asunto(s)
Heparina/química , Espectroscopía de Resonancia Magnética/métodos , Sulfatos de Condroitina/química , Dermatán Sulfato/química , Espectroscopía de Resonancia Magnética/instrumentación
18.
Front Pharmacol ; 12: 660490, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421587

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has caused a significant number of fatalities and worldwide disruption. To identify drugs to repurpose to treat SARS-CoV-2 infections, we established a screen to measure the dimerization of angiotensin-converting enzyme 2 (ACE2), the primary receptor for the virus. This screen identified fenofibric acid, the active metabolite of fenofibrate. Fenofibric acid also destabilized the receptor-binding domain (RBD) of the viral spike protein and inhibited RBD binding to ACE2 in enzyme-linked immunosorbent assay (ELISA) and whole cell-binding assays. Fenofibrate and fenofibric acid were tested by two independent laboratories measuring infection of cultured Vero cells using two different SARS-CoV-2 isolates. In both settings at drug concentrations, which are clinically achievable, fenofibrate and fenofibric acid reduced viral infection by up to 70%. Together with its extensive history of clinical use and its relatively good safety profile, this study identifies fenofibrate as a potential therapeutic agent requiring an urgent clinical evaluation to treat SARS-CoV-2 infection.

19.
Comput Struct Biotechnol J ; 19: 2806-2818, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968333

RESUMEN

SARS-CoV-2 has rapidly spread throughout the world's population since its initial discovery in 2019. The virus infects cells via a glycosylated spike protein located on its surface. The protein primarily binds to the angiotensin-converting enzyme-2 (ACE2) receptor, using glycosaminoglycans (GAGs) as co-receptors. Here, we performed bioinformatics and molecular dynamics simulations of the spike protein to investigate the existence of additional GAG binding sites on the receptor-binding domain (RBD), separate from previously reported heparin-binding sites. A putative GAG binding site in the N-terminal domain (NTD) of the protein was identified, encompassing residues 245-246. We hypothesized that GAGs of a sufficient length might bridge the gap between this site and the PRRARS furin cleavage site, including the mutation S247R. Docking studies using GlycoTorch Vina and subsequent MD simulations of the spike trimer in the presence of dodecasaccharides of the GAGs heparin and heparan sulfate supported this possibility. The heparan sulfate chain bridged the gap, binding the furin cleavage site and S247R. In contrast, the heparin chain bound the furin cleavage site and surrounding glycosylation structures, but not S247R. These findings identify a site in the spike protein that favors heparan sulfate binding that may be particularly pertinent for a better understanding of the recent UK and South African strains. This will also assist in future targeted therapy programs that could include repurposing clinical heparan sulfate mimetics.

20.
Br J Pharmacol ; 178(3): 626-635, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33125711

RESUMEN

BACKGROUND AND PURPOSE: Currently, there are no licensed vaccines and limited antivirals for the treatment of COVID-19. Heparin (delivered systemically) is currently used to treat anticoagulant anomalies in COVID-19 patients. Additionally, in the United Kingdom, Brazil and Australia, nebulised unfractionated heparin (UFH) is being trialled in COVID-19 patients as a potential treatment. A systematic comparison of the potential antiviral effect of various heparin preparations on live wild type SARS-CoV-2, in vitro, is needed. EXPERIMENTAL APPROACH: Seven different heparin preparations including UFH and low MW heparins (LMWH) of porcine or bovine origin were screened for antiviral activity against live SARS-CoV-2 (Australia/VIC01/2020) using a plaque inhibition assay with Vero E6 cells. Interaction of heparin with spike protein RBD was studied using differential scanning fluorimetry and the inhibition of RBD binding to human ACE2 protein using elisa assays was examined. KEY RESULTS: All the UFH preparations had potent antiviral effects, with IC50 values ranging between 25 and 41 µg·ml-1 , whereas LMWHs were less inhibitory by ~150-fold (IC50 range 3.4-7.8 mg·ml-1 ). Mechanistically, we observed that heparin binds and destabilizes the RBD protein and furthermore, we show heparin directly inhibits the binding of RBD to the human ACE2 protein receptor. CONCLUSION AND IMPLICATIONS: This comparison of clinically relevant heparins shows that UFH has significantly stronger SARS-CoV-2 antiviral activity compared to LMWHs. UFH acts to directly inhibit binding of spike protein to the human ACE2 protein receptor. Overall, the data strongly support further clinical investigation of UFH as a potential treatment for patients with COVID-19.


Asunto(s)
Heparina/farmacología , SARS-CoV-2/crecimiento & desarrollo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Antivirales/farmacología , Chlorocebus aethiops , Heparina/metabolismo , Heparina/uso terapéutico , Heparina de Bajo-Peso-Molecular/farmacología , Unión Proteica/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Ensayo de Placa Viral , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA