Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Rev Mol Cell Biol ; 12(3): 138-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21304552
2.
Nat Rev Mol Cell Biol ; 12(1): 8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21179057
3.
Nat Rev Mol Cell Biol ; 12(4): 205, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21407238
4.
Nat Rev Mol Cell Biol ; 12(7): 402, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21654706
5.
Nat Rev Mol Cell Biol ; 13(1): 2-3, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22146747
6.
Nat Rev Mol Cell Biol ; 11(12): 818-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21081962
7.
Nat Rev Mol Cell Biol ; 11(11): 756-7, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20924397
8.
Nat Rev Mol Cell Biol ; 11(7): 466, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20571585
9.
Nat Rev Mol Cell Biol ; 11(8): 542, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20651704
10.
J Immunol ; 189(8): 4069-78, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22988030

RESUMEN

The mechanisms that regulate the acidification of intracellular compartments are key to host defense against pathogens. In this paper, we demonstrate that Abl tyrosine kinase, a master switch for cell growth and trafficking of intracellular organelles, controls the acidification of lysosomes in human macrophages. Pharmacological inhibition by imatinib and gene silencing of Abelson (Abl) tyrosine kinase reduced the lysosomal pH in human macrophages by increasing the transcription and expression of the proton pumping enzyme vacuolar-type H(+)-adenosine triphosphatase. Because lysosomal acidification is required for antimicrobial activity against intracellular bacteria, we determined the effect of imatinib on the growth of the major human pathogen Mycobacterium tuberculosis. Imatinib limited the multiplication of M. tuberculosis, and growth restriction was dependent on acidification of the mycobacterial compartment. The effects of imatinib were also active in vivo because circulating monocytes from imatinib-treated leukemia patients were more acidic than monocytes from control donors. Importantly, sera from imatinib-treated patients triggered acidification and growth restriction of M. tuberculosis in macrophages. In summary, our results identify the control of phagosomal acidification as a novel function of Abl tyrosine kinase and provide evidence that the regulation occurs on the level of the vacuolar-type H(+)-adenosine triphosphatase. Given the efficacy of imatinib in a mouse model of tuberculosis and our finding that orally administered imatinib increased the ability of human serum to trigger growth reduction of intracellular M. tuberculosis, clinical evaluation of imatinib as a complementary therapy of tuberculosis, in particular multidrug or extremely drug-resistant disease, is warranted.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/microbiología , Mycobacterium tuberculosis/inmunología , Fagosomas/inmunología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Benzamidas , Células Cultivadas , Proteínas del Citoesqueleto , Humanos , Concentración de Iones de Hidrógeno , Mesilato de Imatinib , Macrófagos Alveolares/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Fagosomas/efectos de los fármacos , Fagosomas/microbiología , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/inmunología , Pirimidinas/farmacología
11.
Nat Cell Biol ; 8(2): 124-36, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16415858

RESUMEN

The recruitment of the small GTPase Arf6 and ARNO from cytosol to endosomal membranes is driven by V-ATPase-dependent intra-endosomal acidification. The molecular mechanism that mediates this pH-sensitive recruitment and its role are unknown. Here, we demonstrate that Arf6 interacts with the c-subunit, and ARNO with the a2-isoform of V-ATPase. The a2-isoform is targeted to early endosomes, interacts with ARNO in an intra-endosomal acidification-dependent manner, and disruption of this interaction results in reversible inhibition of endocytosis. Inhibition of endosomal acidification abrogates protein trafficking between early and late endosomal compartments. These data demonstrate the crucial role of early endosomal acidification and V-ATPase/ARNO/Arf6 interactions in the regulation of the endocytic degradative pathway. They also indicate that V-ATPase could modulate membrane trafficking by recruiting and interacting with ARNO and Arf6; characteristics that are consistent with the role of V-ATPase as an essential component of the endosomal pH-sensing machinery.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Endosomas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Factor 6 de Ribosilación del ADP , Cloruro de Amonio/farmacología , Animales , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Línea Celular , Dinaminas/genética , Dinaminas/metabolismo , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Endosomas/efectos de los fármacos , Células Epiteliales/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Macrólidos/farmacología , Ratones , Modelos Biológicos , Mutación/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas/fisiología , Albúmina Sérica Bovina/metabolismo , Transfección , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/genética
12.
Biochim Biophys Acta ; 1772(5): 570-9, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17382524

RESUMEN

The sarcoglycan complex in muscle consists of alpha-, beta-, gamma- and delta-sarcoglycan and is part of the larger dystrophin-glycoprotein complex (DGC), which is essential for maintaining muscle membrane integrity. Mutations in any of the four sarcoglycans cause limb-girdle muscular dystrophies (LGMD). In this report, we have identified a novel interaction between delta-sarcoglycan and the 16 kDa subunit c (16K) of vacuolar H(+)-ATPase. Co-expression studies in heterologous cell system revealed that 16K interacts specifically with delta-sarcoglycan and the highly related gamma-sarcoglycan through the transmembrane domains. In cultured C2C12 myotubes, 16K forms a complex with sarcoglycans at the plasma membrane. Loss of sarcoglycans in the sarcoglycan-deficient BIO14.6 hamster destabilizes the DGC and alters the localization of 16K at the sarcolemma. In addition, the steady state level of beta(1)-integrin is increased. Recent studies have shown that 16K also interacts directly with beta(1)-integrin and our data demonstrated that sarcoglycans, 16K and beta(1)-integrin were immunoprecipitated together in C2C12 myotubes. Since sarcoglycans have been proposed to participate in bi-directional signaling with integrins, our findings suggest that 16K might mediate the communication between sarcoglycans and integrins and play an important role in the pathogenesis of muscular dystrophy.


Asunto(s)
Sarcoglicanos/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Cricetinae , Integrina beta1/metabolismo , Masculino , Ratones , Microscopía Inmunoelectrónica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , Sarcolema/metabolismo , Sarcolema/ultraestructura , Transducción de Señal
13.
Nat Rev Cancer ; 12(2): 82-3, 2012 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-22257952
14.
Nat Rev Cancer ; 11(5): 312, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21508965
15.
Cell Microbiol ; 8(6): 939-60, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16681836

RESUMEN

After internalization into macrophages non-pathogenic mycobacteria are killed within phagosomes. Pathogenic mycobacteria can block phagosome maturation and grow inside phagosomes but under some conditions can also be killed by macrophages. Killing mechanisms are poorly understood, although phago-lysosome fusion and nitric oxide (NO) production are implicated. We initiated a systematic analysis addressing how macrophages kill 'non-pathogenic'Mycobacterium smegmatis. This system was dynamic, involving periods of initial killing, then bacterial multiplication, followed by two additional killing stages. NO synthesis represented the earliest killing factor but its synthesis stopped during the first killing period. Phagosome actin assembly and fusion with late endocytic organelles coincided with the first and last killing phase, while recycling of phagosome content and membrane coincided with bacterial growth. Phagosome acidification and acquisition of the vacuolar (V) ATPase followed a different pattern coincident with later killing phases. Moreover, V-ATPase localized to vesicles distinct from classical late endosomes and lysosomes. Map kinase p38 is a crucial regulator of all processes investigated, except NO synthesis, that facilitated the host for some functions while being usurped by live bacteria for others. A mathematical model argues that periodic high and low cellular killing activity is more effective than is a continuous process.


Asunto(s)
Macrófagos/microbiología , Macrófagos/fisiología , Viabilidad Microbiana , Mycobacterium smegmatis/fisiología , Actinas/análisis , Actinas/metabolismo , Animales , Muerte Celular , Línea Celular , Supervivencia Celular , Endosomas/fisiología , Inhibidores Enzimáticos/farmacología , Concentración de Iones de Hidrógeno , Lisosomas/enzimología , Lisosomas/fisiología , Macrólidos/farmacología , Macrófagos/citología , Ratones , Modelos Teóricos , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/patogenicidad , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/fisiología , Orgánulos/fisiología , Fagosomas/química , Fagosomas/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
16.
Nat Rev Cancer ; 10(12): 811, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21155175
17.
Nat Rev Cancer ; 10(6): 384, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20509172
18.
Nat Rev Cancer ; 10(8): 534-5, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20677355
19.
Nat Rev Drug Discov ; 9(6): 434, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20514069
20.
J Biol Chem ; 279(51): 53007-14, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15466867

RESUMEN

Vacuolar H(+)-ATPase functions as a vacuolar proton pump and is responsible for acidification of intracellular compartments such as the endoplasmic reticulum, Golgi, lysosomes, and endosomes. Previous reports have demonstrated that a 16-kDa subunit (16K) of vacuolar H(+)-ATPase via one of its transmembrane domains, TMD4, strongly associates with beta(1) integrin, affecting beta(1) integrin N-linked glycosylation and inhibiting its function as a matrix adhesion receptor. Because of this dramatic inhibition of beta(1) integrin-mediated HEK-293 cell motility by 16K expression, we investigated the mechanism by which 16 kDa was having this effect. Using HT1080 cells whose alpha(5)beta(1) integrin-mediated adhesion to fibronectin has been extensively studied, the expression of 16 kDa also resulted in reduced cell spreading on fibronectin-coated substrates. A pulse-chase study of beta(1) integrin biosynthesis indicated that 16K expression down-regulated the level of the 110-kDa biosynthetic form of beta(1) integrin (premature form) and, consequently, the level of the 130-kDa form of beta(1) integrin (mature form). Further experiments showed that the normal levels of association between the premature beta(1) integrin form and calnexin were significantly decreased by the expression of either 16 kDa or TMD4. Expression of 16 kDa also resulted in a Triton X-100-insoluble aggregation of an unusual 87-kDa form of beta(1) integrin. Interestingly, both Western blotting and a pulse-chase experiment showed co-immunoprecipitation of calnexin and 16K. These results indicate that 16K expression inhibits beta(1) integrin surface expression and spreading on matrix by a novel mechanism that results in reduced levels of functional beta(1) integrin.


Asunto(s)
Membrana Celular/metabolismo , Detergentes/farmacología , Integrina beta1/metabolismo , Octoxinol/farmacología , ATPasas de Translocación de Protón Vacuolares/biosíntesis , ATPasas de Translocación de Protón Vacuolares/química , Biotinilación , Western Blotting , Calnexina/metabolismo , Calnexina/farmacología , Adhesión Celular , Línea Celular , Movimiento Celular , Disulfuros/química , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Fibronectinas/metabolismo , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Inmunoprecipitación , Integrina beta1/química , Cinética , Lisosomas/metabolismo , Microscopía Fluorescente , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Protones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA