Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vavilovskii Zhurnal Genet Selektsii ; 27(3): 240-249, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37293445

RESUMEN

Spider mites (Acari: Tetranychidae) are dangerous pests of agricultural and ornamental crops, the most economically significant of them belonging to the genera Tetranychus, Eutetranychus, Oligonychus and Panonychus. The expansion of the distribution areas, the increased harmfulness and dangerous status of certain species in the family Tetranychidae and their invasion of new regions pose a serious threat to the phytosanitary status of agro- and biocenoses. Various approaches to acarofauna species diagnosis determine a rather diverse range of currently existing methods generally described in this review. Identification of spider mites by morphological traits, which is currently considered the main method, is complicated due to the complexity of preparing biomaterials for diagnosis and a limited number of diagnostic signs. In this regard, biochemical and molecular genetic methods such as allozyme analysis, DNA barcoding, restriction fragment length polymorphism (PCR-RFLP), selection of species-specific primers and real-time PCR are becoming important. In the review, close attention is paid to the successful use of these methods for species discrimination in the mites of the subfamily Tetranychinae. For some species, e. g., the two-spotted spider mite (Tetranychus urticae), a range of identification methods has been developed - from allozyme analysis to loop isothermal amplification (LAMP), while for many other species a much smaller variety of approaches is available. The greatest accuracy in the identification of spider mites can be achieved using a combination of several methods, e. g., examination of morphological features and one of the molecular approaches (DNA barcoding, PCR-RFLP, etc.). This review may be useful to specialists who are in search of an effective system for spider mite species identification as well as when developing new test systems relevant to specific plant crops or a specific region.

2.
Vavilovskii Zhurnal Genet Selektsii ; 25(7): 701-712, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34950842

RESUMEN

Wheatgrass Thinopyrum intermedium is a source of agronomically valuable traits for common wheat. Partial wheat-wheatgrass amphidiploids and lines with wheatgrass chromosome substitutions are extensively used as intermediates in breeding programs. Line Agis 1 (6Agi2/6D) is present in the cultivar Tulaykovskaya 10 pedigree. Wheatgrass chromosome 6Agi2 carries multiple resistance to fungal diseases in various ecogeographical zones. In this work, we studied the transfer of chromosome 6Agi2 in hybrid populations Saratovskaya 29 × skaya 10 (S29 × T10) and Tulaykovskaya 10 × Saratovskaya 29 (T10 × S29). Chromosome 6Agi2 was identif ied by PCR with chromosome-specif ic primers and by genomic in situ hybridization (GISH). According to molecular data, 6Agi2 was transmitted to nearly half of the plants tested in the F2 and F3 generations. A new breeding line 49-14 (2n = 42) with chromosome pair 6Agi2 was isolated and characterized in T10 × S29 F5 by GISH. According to the results of our f ield experiment in 2020, the line had high productivity traits. The grain weights per plant (10.04 ± 0.93 g) and the number of grains per plant (259.36 ± 22.49) did not differ signif icantly from the parent varieties. The number of grains per spikelet in the main spike was signif icantly higher than in S29 ( p ≤ 0.001) or T10 ( p ≤ 0.05). Plants were characterized by the ability to set 3.77 ± 0.1 grains per spikelet, and this trait varied among individuals from 2.93 to 4.62. The grain protein content was 17.91 %, and the gluten content, 40.55 %. According to the screening for fungal disease resistance carried out in the f ield in 2018 and 2020, chromosome 6Agi2 makes plants retain immunity to the West Siberian population of brown rust and to dominant races of stem rust. It also provides medium resistant and medium susceptible types of response to yellow rust. The possibility of using lines/varieties of bread wheat with wheatgrass chromosomes 6Agi2 in breeding in order to increase protein content in the grain, to confer resistance to leaf diseases on plants and to create multif lowered forms is discussed.

3.
Vavilovskii Zhurnal Genet Selektsii ; 25(7): 740-745, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34950845

RESUMEN

Present-day wheat breeding for immunity exploits extensively closely related species from the family Triticeae as gene donors. The 2NS/2AS translocation has been introduced into the genome of the cultivated cereal Triticum aestivum from the wild relative T. ventricosum. It contains the Lr37, Yr17, and Sr38 genes, which support seedling resistance to the pathogens Puccinia triticina Eriks., P. striiformis West. f. sp. tritici, and P. graminis Pers. f. sp. tritici Eriks. & E. Henn, which cause brown, yellow, and stem rust of wheat, respectively. This translocation is present in the varieties Trident, Madsen, and Rendezvous grown worldwide and in the Russian varieties Morozko, Svarog, Graf, Marquis, and Homer bred in southern regions. However, the Sr38 gene has not yet been introduced into commercial varieties in West Siberia; thus, it remains of practical importance for breeding in areas where populations of P. graminis f. sp. tritici are represented by avirulent clones. The main goal of this work was to analyze the frequency of clones (a)virulent to the Sr38 gene in an extended West Siberian collection of stem rust agent isolates. In 2019-2020, 139 single pustule isolates of P. graminis f. sp. tritici were obtained on seedlings of the standard susceptible cultivar Khakasskaya in an environmentally controlled laboratory (Institute of Cytology and Genetics SB RAS) from samples of urediniospores collected on commercial and experimental bread wheat f ields in the Novosibirsk, Omsk, Altai, and Krasnoyarsk regions. By inoculating test wheat genotypes carrying Sr38 (VPM1 and Trident), variations in the purity of (a)virulent clones were detected in geographical samples of P. graminis f. sp. tritici. In general, clones avirulent to Sr38 constitute 60 % of the West Siberian fungus population, whereas not a single virulent isolate was detected in the Krasnoyarsk collection. The Russian breeding material was screened for sources of the stem rust resistance gene by using molecular markers specif ic to the 2NS/2AS translocation. A collection of hybrid lines and varieties of bread spring wheat adapted to West Siberia (Omsk SAU) was analyzed to identify accessions promising for the region. The presence of the gene was postulated by genotyping with specif ic primers (VENTRIUP-LN2) and phytopathological tests with avirulent clones of the fungus. Dominant Sr38 alleles were identif ied in Lutescens 12-18, Lutescens 81-17, Lutescens 66-16, Erythrospermum 79/07, 9-31, and 8-26. On the grounds of the composition of the West Siberian P. graminis f. sp. tritici population, the Sr38 gene can be considered a candidate for pyramiding genotypes promising for the Novosibirsk, Altai, and Krasnoyarsk regions.

4.
Vavilovskii Zhurnal Genet Selektsii ; 24(8): 821-828, 2020 Dec.
Artículo en Ruso | MEDLINE | ID: mdl-35087994

RESUMEN

Current studies on bread wheat resistance to stem rust have two main subjects: complex analysis for resistance of bread wheat germplasm using molecular markers, field screening and laboratory tests against samples of different fungal populations, and searching for sources and donors of new genes and gene loci, including cultivated and wild relatives of wheat. To achieve adequate genetic control of the disease, an integral approach is important, incorporating both data on sources of resistance and relevant information on pathogenic populations existing in the region, their race composition and dynamics of virulence genes. The analysis of experimental data on field screening of bread wheat varieties from the CIMMYT nursery germplasm for stem rust resistance in the Omsk and Novosibirsk regions, together with laboratory testing of infection samples on the international set of wheat differential lines, suggests that a separate "Asian" population of Puccinia graminis f. sp. tritici exists in Western Siberia and the Altai Territory. Wheat resistance genes Sr2, Sr6Ai#2, Sr24, Sr25, Sr26, Sr31, Sr39, Sr40, Sr44, and Sr57 are of practical interest for advanced wheat breeding programs for stem rust immunity in Western Siberia. This review provides an analysis of the gene sources that remain effective against the West Siberian population of P. graminis, in order to facilitate the initial stage of selection of breeding material to develop a stable genotype by gene pyramiding. The basic requirements for conducting a phytopathological test of breeding material are presented. A list of molecular markers for the mentioned resistance genes, both widely used in marker-assisted selection and requiring verification, has been compiled.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA