Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Physiol Plant ; 176(3): e14404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38922894

RESUMEN

Soil acidity is a global issue; soils with pH <4.5 are widespread in Europe. This acidity adversely affects nutrient availability to plants; pH levels <5.0 lead to aluminum (Al3+) toxicity, a significant problem that hinders root growth and nutrient uptake in faba bean (Vicia faba L.) and its symbiotic relationship with Rhizobium. However, little is known about the specific traits and tolerant genotypes among the European faba beans. This study aimed to identify response traits associated with tolerance to root zone acidity and Al3+ toxicity and potentially tolerant genotypes for future breeding efforts. Germplasm survey was conducted using 165 genotypes in a greenhouse aquaponics system. Data on the root and shoot systems were collected. Subsequently, 12 genotypes were selected for further phenotyping in peat medium, where data on physiological and morphological parameters were recorded along with biochemical responses in four selected genotypes. In the germplasm survey, about 30% of genotypes showed tolerance to acidity and approximately 10% exhibited tolerance to Al3+, while 7% showed tolerance to both. The phenotyping experiment indicated diverse morphological and physiological responses among treatments and genotypes. Acid and Al3+ increased proline concentration. Interaction between genotype and environment was observed for ascorbate peroxidase activity, malondialdehyde, and proline concentrations. Genomic markers associated with acidity and acid+Al3+-toxicity tolerances were identified using GWAS analysis. Four faba bean genotypes with varying levels of tolerance to acidity and Al3+ toxicity were identified.


Asunto(s)
Aluminio , Genotipo , Fenotipo , Vicia faba , Vicia faba/genética , Vicia faba/efectos de los fármacos , Vicia faba/crecimiento & desarrollo , Vicia faba/metabolismo , Aluminio/toxicidad , Suelo/química , Concentración de Iones de Hidrógeno , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Prolina/metabolismo , Adaptación Fisiológica/genética , Adaptación Fisiológica/efectos de los fármacos , Ácidos/metabolismo
2.
Theor Appl Genet ; 136(5): 114, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37074596

RESUMEN

KEY MESSAGE: We identified marker-trait associations for key faba bean agronomic traits and genomic signatures of selection within a global germplasm collection. Faba bean (Vicia faba L.) is a high-protein grain legume crop with great potential for sustainable protein production. However, little is known about the genetics underlying trait diversity. In this study, we used 21,345 high-quality SNP markers to genetically characterize 2678 faba bean genotypes. We performed genome-wide association studies of key agronomic traits using a seven-parent-MAGIC population and detected 238 significant marker-trait associations linked to 12 traits of agronomic importance. Sixty-five of these were stable across multiple environments. Using a non-redundant diversity panel of 685 accessions from 52 countries, we identified three subpopulations differentiated by geographical origin and 33 genomic regions subjected to strong diversifying selection between subpopulations. We found that SNP markers associated with the differentiation of northern and southern accessions explained a significant proportion of agronomic trait variance in the seven-parent-MAGIC population, suggesting that some of these traits were targets of selection during breeding. Our findings point to genomic regions associated with important agronomic traits and selection, facilitating faba bean genomics-based breeding.


Asunto(s)
Fabaceae , Vicia faba , Vicia faba/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Fenotipo , Fabaceae/genética
3.
Theor Appl Genet ; 135(1): 125-143, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34628514

RESUMEN

KEY MESSAGE: Accurate genomic prediction of yield within and across generations was achieved by estimating the genetic merit of individual white clover genotypes based on extensive genetic replication using cloned material. White clover is an agriculturally important forage legume grown throughout temperate regions as a mixed clover-grass crop. It is typically cultivated with low nitrogen input, making yield dependent on nitrogen fixation by rhizobia in root nodules. Here, we investigate the effects of clover and rhizobium genetic variation by monitoring plant growth and quantifying dry matter yield of 704 combinations of 145 clover genotypes and 170 rhizobium inocula. We find no significant effect of rhizobium variation. In contrast, we can predict yield based on a few white clover markers strongly associated with plant size prior to nitrogen fixation, and the prediction accuracy for polycross offspring yield is remarkably high. Several of the markers are located near a homolog of Arabidopsis thaliana GIGANTUS 1, which regulates growth rate and biomass accumulation. Our work provides fundamental insight into the genetics of white clover yield and identifies specific candidate genes as breeding targets.


Asunto(s)
Genes de Plantas , Fijación del Nitrógeno , Rhizobium leguminosarum/fisiología , Trifolium/genética , Variación Genética , Genotipo , Modelos Genéticos , Desarrollo de la Planta/genética , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/aislamiento & purificación , Trifolium/crecimiento & desarrollo , Trifolium/metabolismo , Trifolium/microbiología
4.
Nat Commun ; 11(1): 253, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937774

RESUMEN

Colonization of new habitats is expected to require genetic adaptations to overcome environmental challenges. Here, we use full genome re-sequencing and extensive common garden experiments to investigate demographic and selective processes associated with colonization of Japan by Lotus japonicus over the past ~20,000 years. Based on patterns of genomic variation, we infer the details of the colonization process where L. japonicus gradually spread from subtropical conditions to much colder climates in northern Japan. We identify genomic regions with extreme genetic differentiation between northern and southern subpopulations and perform population structure-corrected association mapping of phenotypic traits measured in a common garden. Comparing the results of these analyses, we find that signatures of extreme subpopulation differentiation overlap strongly with phenotype association signals for overwintering and flowering time traits. Our results provide evidence that these traits were direct targets of selection during colonization and point to associated candidate genes.


Asunto(s)
Aclimatación/genética , Lotus/genética , Evolución Biológica , Genes de Plantas/genética , Variación Genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Genotipo , Geografía , Japón , Lotus/crecimiento & desarrollo , Lotus/fisiología , Fenotipo , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA