Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39104319

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible respiratory disease with limited therapeutic options. A hallmark of IPF is excessive fibroblast activation and extracellular matrix (ECM) deposition. The resulting increase in tissue stiffness amplifies fibroblast activation and drives disease progression. Dampening stiffness-dependent activation of fibroblasts could slow disease progression. We performed an unbiased, next generation sequencing (NGS) screen to identify signaling pathways involved in stiffness-dependent lung fibroblast activation. Adipocytokine signaling was downregulated in primary lung fibroblasts (PFs) cultured on stiff matrices. Re-activating adipocytokine signaling with adiponectin suppressed stiffness-dependent activation of human PFs. Adiponectin signaling depended on CDH13 expression and p38 mitogen-activated protein kinase gamma (p38MAPKγ) activation. CDH13 expression and p38MAPKγ activation were strongly reduced in lungs from IPF donors. Our data suggest that adiponectin-signaling via CDH13 and p38MAPKγ activation suppresses pro-fibrotic activation of fibroblasts in the lung. Targeting of the adiponectin signaling cascade may provide therapeutic benefits in IPF.

2.
EMBO Rep ; 22(8): e52785, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34224201

RESUMEN

Unveiling the molecular mechanisms of tissue remodelling following injury is imperative to elucidate its regenerative capacity and aberrant repair in disease. Using different omics approaches, we identified enhancer of zester homolog 2 (EZH2) as a key regulator of fibrosis in injured lung epithelium. Epithelial injury drives an enrichment of nuclear transforming growth factor-ß-activated kinase 1 (TAK1) that mediates EZH2 phosphorylation to facilitate its liberation from polycomb repressive complex 2 (PRC2). This process results in the establishment of a transcriptional complex of EZH2, RNA-polymerase II (POL2) and nuclear actin, which orchestrates aberrant epithelial repair programmes. The liberation of EZH2 from PRC2 is accompanied by an EZH2-EZH1 switch to preserve H3K27me3 deposition at non-target genes. Loss of epithelial TAK1, EZH2 or blocking nuclear actin influx attenuates the fibrotic cascade and restores respiratory homeostasis. Accordingly, EZH2 inhibition significantly improves outcomes in a pulmonary fibrosis mouse model. Our results reveal an important non-canonical function of EZH2, paving the way for new therapeutic interventions in fibrotic lung diseases.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Histonas , Animales , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Fibrosis , Histonas/metabolismo , Ratones , Fosforilación , Complejo Represivo Polycomb 2/metabolismo
3.
Eur Respir J ; 59(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34561292

RESUMEN

BACKGROUND: Elevated counts of alveolar macrophages and attenuated phagocytic capacity are associated with chronic obstructive pulmonary disease (COPD). Factors governing macrophage phagocytosis are poorly understood. In this study we aimed to compare the influence of airway epithelial cell secretions from individuals with COPD and without COPD (non-COPD) on macrophage phagocytic activity, and the role of antimicrobial peptides (AMPs). METHODS: Supernatants from non-COPD and COPD small airway epithelial cell (SAEC) cultures exposed to non-typeable Haemophilus influenzae (NTHi) were applied to human monocyte-derived macrophages (MDMs) to assess their influence on phagocytosis. SAECs were analysed for changes in AMP expression by quantitative reverse transcription PCR, and the influence of select AMPs on macrophage phenotype and function was assessed by flow cytometry and metabolic activity assay. RESULTS: Secretions from the apical and basolateral surface of NTHi-exposed SAECs from non-COPD donors elicited superior phagocytic capacity in MDMs. Moreover, NTHi exposure led to a rapid increase in the expression of a range of AMPs by non-COPD SAECs, but this response was delayed in COPD SAECs. We demonstrate that treatment with AMPs ß-defensin 2 and S100 calcium binding protein A8/S100 calcium binding protein A9 (S100A8/A9) improved the phagocytic capacity of MDMs. In-depth analysis of the influence of S100A8/A9 on MDMs revealed a role for this AMP in macrophage phenotype and function. Furthermore, we show that the expression of S100A8 and S100A9 is directly regulated by WNT/ß-catenin signalling, a known deregulated pathway in COPD. CONCLUSION: In conclusion, for the first time, we demonstrate that airway epithelium from patients with COPD has a reduced capacity to support the phagocytic function of macrophages in response to acute NTHi exposure, and we identify the WNT/ß-catenin signalling-modulated and epithelium-derived S100A8/A9 as a potent regulator of macrophage phenotype and function.


Asunto(s)
Péptidos Antimicrobianos , Calgranulina A , Calgranulina B , Enfermedad Pulmonar Obstructiva Crónica , Humanos , beta Catenina/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Epitelio/metabolismo , Haemophilus influenzae , Macrófagos/metabolismo , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
4.
Chembiochem ; 22(3): 491-495, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-32936508

RESUMEN

The introduction of N6-methyladenosine (m6 A) into siRNA targeting Factor VII impacts its potency in cells and has a significant influence on the selectivity of siRNA, including reduced off-targeting. These effects are dependent on the position of m6 A in the siRNA duplex, with some of the sequences identified as more potent and/or selective than their non-methylated counterpart. These findings broaden the repertoire of available chemical modifications for siRNA therapeutics and imply potential regulatory role of N6-methyladenosine in the RNAi pathways.


Asunto(s)
Adenosina/análogos & derivados , ARN Interferente Pequeño/química , Adenosina/química , Adenosina/genética , Epigénesis Genética/genética , Conformación de Ácido Nucleico , ARN Interferente Pequeño/genética
5.
Am J Respir Crit Care Med ; 196(2): 172-185, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28245136

RESUMEN

RATIONALE: Chronic obstructive pulmonary disease (COPD), in particular emphysema, is characterized by loss of parenchymal alveolar tissue and impaired tissue repair. Wingless and INT-1 (WNT)/ß-catenin signaling is reduced in COPD; however, the mechanisms thereof, specifically the role of the frizzled (FZD) family of WNT receptors, remain unexplored. OBJECTIVES: To identify and functionally characterize specific FZD receptors that control downstream WNT signaling in impaired lung repair in COPD. METHODS: FZD expression was analyzed in lung homogenates and alveolar epithelial type II (ATII) cells of never-smokers, smokers, patients with COPD, and two experimental COPD models by quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and immunofluorescence. The functional effects of cigarette smoke on FZD4, WNT/ß-catenin signaling, and elastogenic components were investigated in primary ATII cells in vitro and in three-dimensional lung tissue cultures ex vivo. Gain- and loss-of-function approaches were applied to determine the effects of FZD4 signaling on alveolar epithelial cell wound healing and repair, as well as on expression of elastogenic components. MEASUREMENTS AND MAIN RESULTS: FZD4 expression was reduced in human and experimental COPD lung tissues as well as in primary human ATII cells from patients with COPD. Cigarette smoke exposure down-regulated FZD4 expression in vitro and in vivo, along with reduced WNT/ß-catenin activity. Inhibition of FZD4 decreased WNT/ß-catenin-driven epithelial cell proliferation and wound closure, and it interfered with ATII-to-ATI cell transdifferentiation and organoid formation, which were augmented by FZD4 overexpression. Moreover, FZD4 restoration by overexpression or pharmacological induction led to induction of WNT/ß-catenin signaling and expression of elastogenic components in three-dimensional lung tissue cultures ex vivo. CONCLUSIONS: Reduced FZD4 expression in COPD contributes to impaired alveolar repair capacity.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Receptores Frizzled/metabolismo , Pulmón/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Anciano , Regulación hacia Abajo/genética , Femenino , Receptores Frizzled/genética , Humanos , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Proteínas Wnt/genética , Vía de Señalización Wnt/genética , beta Catenina/genética
6.
Eur Respir J ; 50(2)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28775044

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor prognosis and limited therapeutic options. The incidence of IPF increases with age, and ageing-related mechanisms such as cellular senescence have been proposed as pathogenic drivers. The lung alveolar epithelium represents a major site of tissue injury in IPF and senescence of this cell population is probably detrimental to lung repair. However, the potential pathomechanisms of alveolar epithelial cell senescence and the impact of senolytic drugs on senescent lung cells and fibrosis remain unknown. Here we demonstrate that lung epithelial cells exhibit increased P16 and P21 expression as well as senescence-associated ß-galactosidase activity in experimental and human lung fibrosis tissue and primary cells.Primary fibrotic mouse alveolar epithelial type (AT)II cells secreted increased amounts of senescence-associated secretory phenotype (SASP) factors in vitro, as analysed using quantitative PCR, mass spectrometry and ELISA. Importantly, pharmacological clearance of senescent cells by induction of apoptosis in fibrotic ATII cells or ex vivo three-dimensional lung tissue cultures reduced SASP factors and extracellular matrix markers, while increasing alveolar epithelial markers.These data indicate that alveolar epithelial cell senescence contributes to lung fibrosis development and that senolytic drugs may be a viable therapeutic option for IPF.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Biomarcadores/metabolismo , Senescencia Celular , Fibrosis Pulmonar Idiopática/metabolismo , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Ratones
7.
JCI Insight ; 7(11)2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35503656

RESUMEN

In many solid cancers, tumor-associated macrophages (TAM) represent the predominant myeloid cell population. Antigen (Ag) cross-presentation leading to tumor Ag-directed cytotoxic CD8+ T cell responses is crucial for antitumor immunity. However, the role of recruited monocyte-derived macrophages, including TAM, as potential cross-presenting cells is not well understood. Here, we show that primary human as well as mouse CD206+ macrophages are effective in functional cross-presentation of soluble self-Ag and non-self-Ag, including tumor-associated Ag (TAA), as well as viral Ag. To confirm the presence of cross-presenting TAM in vivo, we performed phenotypic and functional analysis of TAM from B16-F10 and CT26 syngeneic tumor models and have identified CD11b+F4/80hiCD206+ TAM to effectively cross-present TAA. We show that CD11b+CD206+ TAM represent the dominant tumor-infiltrating myeloid cell population, expressing a unique cell surface repertoire, promoting Ag cross-presentation and Ag-specific CD8+ T cell activation comparable with cross-presenting CLEC9A+ DCs (cDC1). The presence of cross-presenting CD206+ TAM is associated with reduced tumor burden in mouse syngeneic tumor models and with improved overall survival in cutaneous melanoma patients. Therefore, the demonstration of effective Ag cross-presentation capabilities of CD206+ TAM, including their clinical relevance, expands our understanding of TAM phenotypic diversity and functional versatility.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Antígenos de Neoplasias , Reactividad Cruzada , Humanos , Ratones , Neoplasias Cutáneas/patología , Macrófagos Asociados a Tumores
8.
Pharmacol Ther ; 187: 150-166, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29458107

RESUMEN

The WNT signalling cascades have emerged as critical regulators of a wide variety of biological aspects involved in lung development as well as in physiological and pathophysiological processes in the adult lung. WNTs (secreted glycoproteins) interact with various transmembrane receptors and co-receptors to activate signalling pathways that regulate transcriptional as well as non-transcriptional responses within cells. In physiological conditions, the majority of WNT receptors and co-receptors can be detected in the adult lung. However, dysregulation of WNT signalling pathways contributes to the development and progression of chronic lung pathologies, including idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. The interaction between a WNT and the (co-)receptor(s) present at the cell surface is the initial step in transducing an extracellular signal into an intracellular response. This proximal event in WNT signal transduction with (cell-specific) ligand-receptor interactions is of great interest as a potential target for pharmacological intervention. In this review we highlight the diverse expression of various WNT receptors and co-receptors in the aforementioned chronic lung diseases and discuss the currently available biologicals and pharmacological tools to modify proximal WNT signalling.


Asunto(s)
Enfermedades Pulmonares/metabolismo , Pulmón/fisiología , Proteínas Wnt/fisiología , Animales , Polaridad Celular , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt
9.
Sci Rep ; 8(1): 12983, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154568

RESUMEN

Mechanisms of injury and repair in alveolar epithelial cells (AECs) are critically involved in the progression of various lung diseases including idiopathic pulmonary fibrosis (IPF). Homeobox only protein x (HOPX) contributes to the formation of distal lung during development. In adult lung, alveolar epithelial type (AT) I cells express HOPX and lineage-labeled Hopx+ cells give rise to both ATI and ATII cells after pneumonectomy. However, the cell function of HOPX-expressing cells in adult fibrotic lung diseases has not been investigated. In this study, we have established a flow cytometry-based method to evaluate HOPX-expressing cells in the lung. HOPX expression in cultured ATII cells increased over culture time, which was accompanied by a decrease of proSP-C, an ATII marker. Moreover, HOPX expression was increased in AECs from bleomycin-instilled mouse lungs in vivo. Small interfering RNA-based knockdown of Hopx resulted in suppressing ATII-ATI trans-differentiation and activating cellular proliferation in vitro. In IPF lungs, HOPX expression was decreased in whole lungs and significantly correlated to a decline in lung function and progression of IPF. In conclusion, HOPX is upregulated during early alveolar injury and repair process in the lung. Decreased HOPX expression might contribute to failed regenerative processes in end-stage IPF lungs.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Proteínas de Homeodominio/biosíntesis , Fibrosis Pulmonar Idiopática/metabolismo , Alveolos Pulmonares/patología , Proteínas Supresoras de Tumor/biosíntesis , Células Epiteliales Alveolares/patología , Animales , Bleomicina/toxicidad , Línea Celular , Transdiferenciación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Proteínas de Homeodominio/genética , Humanos , Fibrosis Pulmonar Idiopática/patología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Pulmón/fisiología , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Proteína C Asociada a Surfactante Pulmonar , Interferencia de ARN , ARN Interferente Pequeño/genética , Regeneración/genética , Transfección , Proteínas Supresoras de Tumor/genética
10.
J Exp Med ; 214(1): 143-163, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27979969

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. One main pathological feature of COPD is the loss of functional alveolar tissue without adequate repair (emphysema), yet the underlying mechanisms are poorly defined. Reduced WNT-ß-catenin signaling is linked to impaired lung repair in COPD; however, the factors responsible for attenuating this pathway remain to be elucidated. Here, we identify a canonical to noncanonical WNT signaling shift contributing to COPD pathogenesis. We demonstrate enhanced expression of noncanonical WNT-5A in two experimental models of COPD and increased posttranslationally modified WNT-5A in human COPD tissue specimens. WNT-5A was increased in primary lung fibroblasts from COPD patients and induced by COPD-related stimuli, such as TGF-ß, cigarette smoke (CS), and cellular senescence. Functionally, mature WNT-5A attenuated canonical WNT-driven alveolar epithelial cell wound healing and transdifferentiation in vitro. Lung-specific WNT-5A overexpression exacerbated airspace enlargement in elastase-induced emphysema in vivo. Accordingly, inhibition of WNT-5A in vivo attenuated lung tissue destruction, improved lung function, and restored expression of ß-catenin-driven target genes and alveolar epithelial cell markers in the elastase, as well as in CS-induced models of COPD. We thus identify a novel essential mechanism involved in impaired mesenchymal-epithelial cross talk in COPD pathogenesis, which is amenable to therapy.


Asunto(s)
Pulmón/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Vía de Señalización Wnt/fisiología , Proteína Wnt-5a/fisiología , Animales , Células Cultivadas , Enfisema/etiología , Femenino , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/etiología , Fumar/efectos adversos , beta Catenina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA