Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Metabolomics ; 16(7): 75, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32556595

RESUMEN

INTRODUCTION: Low potassium intake can affect cardiovascular disease (CVD) risk and cardiometabolic risk factors. OBJECTIVE: We hypothesize that potassium chloride (KCl) supplementation can improve cardiovascular risk metabolomic profile. METHODS: In this secondary analysis of a pilot randomized clinical trial (RCT) of 26 participants with prediabetes randomized to KCl or placebo, we performed targeted mass-spectrometry-based metabolomic profiling on baseline and 12-week (end-of-study) plasma samples. Principal component analysis (PCA) was used to reduce the many correlated metabolites into fewer, independent factors that retain most of the information in the original data. RESULTS: Those taking KCl had significant reductions (corresponding to lower cardiovascular risk) in the branched-chain amino acids (BCAA) factor (P = 0.004) and in valine levels (P = 0.02); and non-significant reductions in short-chain acylcarnitines (SCA) factor (P = 0.11). CONCLUSIONS: KCl supplementation may improve circulating BCAA levels, which may reflect improvements in overall cardiometabolic risk profile. CLINICAL TRIALS REGISTRY: Clinicaltrials.gov identifier: NCT02236598; https://clinicaltrials.gov/ct2/show/NCT02236598.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus/metabolismo , Cloruro de Potasio/farmacología , Glucemia/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Masculino , Espectrometría de Masas/métodos , Metaboloma/fisiología , Metabolómica/métodos , Persona de Mediana Edad , Proyectos Piloto , Plasma/química , Cloruro de Potasio/metabolismo , Factores de Riesgo
2.
Nucleic Acids Res ; 46(15): 7772-7792, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29986096

RESUMEN

Genome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed >200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal the underlying genomic structure of MD. Using 1,012 human skeletal muscle samples, detailed physiology and a tissue-optimized approach for the quantification of coding (>18,000) and non-coding (>15,000) RNA (ncRNA), we identified 332 fasting IS-related genes (CORE-IS). Over 200 had a proven role in the biochemistry of insulin and/or metabolism or were located at GWAS MD loci. Over 50% of the CORE-IS genes responded to clinical treatment; 16 quantitatively tracking changes in IS across four independent studies (P = 0.0000053: negatively: AGL, G0S2, KPNA2, PGM2, RND3 and TSPAN9 and positively: ALDH6A1, DHTKD1, ECHDC3, MCCC1, OARD1, PCYT2, PRRX1, SGCG, SLC43A1 and SMIM8). A network of ncRNA positively related to IS and interacted with RNA coding for viral response proteins (P < 1 × 10-48), while reduced amino acid catabolic gene expression occurred without a change in expression of oxidative-phosphorylation genes. We illustrate that combining in-depth physiological phenotyping with robust RNA profiling methods, identifies molecular networks which are highly consistent with the genetics and biochemistry of human metabolic disease.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Genómica , Resistencia a la Insulina/genética , Músculo Esquelético/metabolismo , Transcriptoma , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Ejercicio Físico , Perfilación de la Expresión Génica , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo , Humanos , Insulina/metabolismo , Enfermedades Metabólicas/genética , Modelos Moleculares , Fosforilación Oxidativa , Sitios de Carácter Cuantitativo , ARN/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 38(4): 943-952, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29437573

RESUMEN

OBJECTIVE: Measures of HDL (high-density lipoprotein) function are associated with cardiovascular disease. However, the effects of regular exercise on these measures is largely unknown. Thus, we examined the effects of different doses of exercise on 3 measures of HDL function in 2 randomized clinical exercise trials. APPROACH AND RESULTS: Radiolabeled and boron dipyrromethene difluoride-labeled cholesterol efflux capacity and HDL-apoA-I (apolipoprotein A-I) exchange were assessed before and after 6 months of exercise training in 2 cohorts: STRRIDE-PD (Studies of Targeted Risk Reduction Interventions through Defined Exercise, in individuals with Pre-Diabetes; n=106) and E-MECHANIC (Examination of Mechanisms of exercise-induced weight compensation; n=90). STRRIDE-PD participants completed 1 of 4 exercise interventions differing in amount and intensity. E-MECHANIC participants were randomized into 1 of 2 exercise groups (8 or 20 kcal/kg per week) or a control group. HDL-C significantly increased in the high-amount/vigorous-intensity group (3±5 mg/dL; P=0.02) of STRRIDE-PD, whereas no changes in HDL-C were observed in E-MECHANIC. In STRRIDE-PD, global radiolabeled efflux capacity significantly increased 6.2% (SEM, 0.06) in the high-amount/vigorous-intensity group compared with all other STRRIDE-PD groups (range, -2.4 to -8.4%; SEM, 0.06). In E-MECHANIC, non-ABCA1 (ATP-binding cassette transporter A1) radiolabeled efflux significantly increased 5.7% (95% CI, 1.2-10.2%) in the 20 kcal/kg per week group compared with the control group, with no change in the 8 kcal/kg per week group (2.6%; 95% CI, -1.4 to 6.7%). This association was attenuated when adjusting for change in HDL-C. Exercise training did not affect BODIPY-labeled cholesterol efflux capacity or HDL-apoA-I exchange in either study. CONCLUSIONS: Regular prolonged vigorous exercise improves some but not all measures of HDL function. Future studies are warranted to investigate whether the effects of exercise on cardiovascular disease are mediated in part by improving HDL function. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifiers: NCT00962962 and NCT01264406.


Asunto(s)
HDL-Colesterol/sangre , Terapia por Ejercicio , Obesidad/terapia , Estado Prediabético/terapia , Transportador 1 de Casete de Unión a ATP/metabolismo , Adolescente , Adulto , Anciano , Apolipoproteína A-I/sangre , Biomarcadores/sangre , Femenino , Estado de Salud , Humanos , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/diagnóstico , Obesidad/fisiopatología , Estado Prediabético/sangre , Estado Prediabético/diagnóstico , Estado Prediabético/fisiopatología , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
4.
Diabetologia ; 59(10): 2088-98, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27421729

RESUMEN

AIMS/HYPOTHESIS: Although the Diabetes Prevention Program (DPP) established lifestyle changes (diet, exercise and weight loss) as the 'gold standard' preventive therapy for diabetes, the relative contribution of exercise alone to the overall utility of the combined diet and exercise effect of DPP is unknown; furthermore, the optimal intensity of exercise for preventing progression to diabetes remains very controversial. To establish clinical efficacy, we undertook a study (2009 to 2013) to determine: how much of the effect on measures of glucose homeostasis of a 6 month programme modelled after the first 6 months of the DPP is due to exercise alone; whether moderate- or vigorous-intensity exercise is better for improving glucose homeostasis; and to what extent amount of exercise is a contributor to improving glucose control. The primary outcome was improvement in fasting plasma glucose, with improvement in plasma glucose AUC response to an OGTT as the major secondary outcome. METHODS: The trial was a parallel clinical trial. Sedentary, non-smokers who were 45-75 year old adults (n = 237) with elevated fasting glucose (5.28-6.94 mmol/l) but without cardiovascular disease, uncontrolled hypertension, or diabetes, from the Durham area, were studied at Duke University. They were randomised into one of four 6 month interventions: (1) low amount (42 kJ kg body weight(-1) week(-1) [KKW])/moderate intensity: equivalent of expending 42 KKW (e.g. walking ∼16 km [8.6 miles] per week) with moderate-intensity (50% [Formula: see text]) exercise; (2) high amount (67 KKW)/moderate intensity: equivalent of expending 67 KKW (∼22.3 km [13.8 miles] per week) with moderate-intensity exercise; (3) high amount (67 KKW)/vigorous intensity: equivalent to group 2, but with vigorous-intensity exercise (75% [Formula: see text]); and (4) diet + 42 KKW moderate intensity: same as group 1 but with diet and weight loss (7%) to mimic the first 6 months of the DPP. Computer-generated randomisation lists were provided by our statistician (G. P. Samsa). The randomisation list was maintained by L. H. Willis and C. A. Slentz with no knowledge of or input into the scheduling, whereas all scheduling was done by L. A. Bateman, with no knowledge of the randomisation list. Subjects were automatically assigned to the next group listed on the randomisation sheet (with no ability to manipulate the list order) on the day that they came in for the OGTT, by L. H. Willis. All plasma analysis was done blinded by the individuals doing the measurements (i.e. lipids, glucose, insulin). Subjects and research staff (other than individuals analysing the blood) were not blinded to the group assignments. RESULTS: Number randomised, completers and number analysed with complete OGTT data for each group were: low-amount/moderate-intensity (61, 43, 35); high-amount/moderate-intensity (61, 44, 40); high-amount/vigorous-intensity (61, 43, 38); diet/exercise (54, 45, 37), respectively. Only the diet and exercise group experienced a decrease in fasting glucose (p < 0.001). The means and 95% CIs for changes in fasting glucose (mmol/l) for each group were: high-amount/moderate-intensity -0.07 (-0.20, 0.06); high-amount/vigorous 0.06 (-0.07, 0.19); low-amount/moderate 0.05 (-0.05, 0.15); and diet/exercise -0.32 (-0.46, -0.18). The effects sizes for each group (in the same order) were: 0.17, 0.15, 0.18 and 0.71, respecively. For glucose tolerance (glucose AUC of OGTT), similar improvements were observed for the diet and exercise (8.2% improvement, effect size 0.73) and the 67 KKW moderate-intensity exercise (6.4% improvement, effect size 0.60) groups; moderate-intensity exercise was significantly more effective than the same amount of vigorous-intensity exercise (p < 0.0207). The equivalent amount of vigorous-intensity exercise alone did not significantly improve glucose tolerance (1.2% improvement, effect size 0.21). Changes in insulin AUC, fasting plasma glucose and insulin did not differ among the exercise groups and were numerically inferior to the diet and exercise group. CONCLUSIONS/INTERPRETATION: In the present clinical efficacy trial we found that a high amount of moderate-intensity exercise alone was very effective at improving oral glucose tolerance despite a relatively modest 2 kg change in body fat mass. These data, combined with numerous published observations of the strong independent relation between postprandial glucose concentrations and prediction of future diabetes, suggest that walking ∼18.2 km (22.3 km prescribed with 81.6% adherence in the 67 KKW moderate-intensity group) per week may be nearly as effective as a more intensive multicomponent approach involving diet, exercise and weight loss for preventing the progression to diabetes in prediabetic individuals. These findings have important implications for the choice of clinical intervention to prevent progression to type 2 diabetes for those at high risk. TRIAL REGISTRATION: ClinicalTrials.gov NCT00962962 FUNDING: The study was funded by National Institutes for Health National Institute of Diabetes and Digestive and Kidney Diseases (NIH-NDDK) (R01DK081559).


Asunto(s)
Ejercicio Físico/fisiología , Estado Prediabético/dietoterapia , Estado Prediabético/terapia , Anciano , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Femenino , Prueba de Tolerancia a la Glucosa , Homeostasis/fisiología , Humanos , Insulina/metabolismo , Estilo de Vida , Masculino , Persona de Mediana Edad , Estado Prediabético/metabolismo , Pérdida de Peso/fisiología
5.
Curr Cardiol Rep ; 18(12): 117, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27796854

RESUMEN

Due to the beneficial effects on a wide range of modern medical conditions, most professional societies recommend regular aerobic exercise as part of a healthy lifestyle. Many of the exercise-related health benefits exhibit a dose-response relationship: Up to a point, more exercise is more beneficial. However, recent studies have suggested that different exercise intensities may provide distinct health benefits, independent of energy expenditure (i.e., exercise dose). One of these benefits, primarily mediated by the skeletal muscle, is exercise-related changes in insulin action and glucose homeostasis. Glucose uptake in the exercising muscle occurs through insulin-independent mechanisms whose downstream signaling events ultimately converge with insulin-signaling pathways, a fact that may explain why exercise and insulin have additive effect on skeletal muscle glucose uptake. Although the existing evidence is somewhat conflicting, well-controlled randomized studies suggest that, when controlled for total energy expenditure, moderate-intensity aerobic exercise improves insulin sensitivity more than vigorous-intensity aerobic exercise. The mechanisms underlying this difference are largely unknown. One possible explanation involves enhanced metabolism of fatty acid stores in the skeletal muscle by moderate-intensity exercise, which may directly improve insulin sensitivity. Overall, new technologic and physiologic investigative tools are beginning to shed light on the biology. Further understanding of these mechanisms will lead to better understanding of the clinical implications of a healthy lifestyle and may ultimately offer new therapeutic targets for common medical conditions such as insulin resistance and diabetes.


Asunto(s)
Ejercicio Físico/fisiología , Insulina/metabolismo , Esfuerzo Físico/fisiología , Conducta de Reducción del Riesgo , Glucemia/metabolismo , Metabolismo Energético , Transportador de Glucosa de Tipo 4/fisiología , Homeostasis , Humanos , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Conducta Sedentaria , Transducción de Señal
6.
Diabetologia ; 58(10): 2324-35, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26254576

RESUMEN

AIMS/HYPOTHESES: Obesity is associated with decreased insulin sensitivity (IS) and elevated plasma branched-chain amino acids (BCAAs). The purpose of this study was to investigate the relationship between BCAA metabolism and IS in overweight (OW) individuals during exercise intervention. METHODS: Whole-body leucine turnover, IS by hyperinsulinaemic-euglycaemic clamp, and circulating and skeletal muscle amino acids, branched-chain α-keto acids and acylcarnitines were measured in ten healthy controls (Control) and nine OW, untrained, insulin-resistant individuals (OW-Untrained). OW-Untrained then underwent a 6 month aerobic and resistance exercise programme and repeated testing (OW-Trained). RESULTS: IS was higher in Control vs OW-Untrained and increased significantly following exercise. IS was lower in OW-Trained vs Control expressed relative to body mass, but was not different from Control when normalised to fat-free mass (FFM). Plasma BCAAs and leucine turnover (relative to FFM) were higher in OW-Untrained vs Control, but did not change on average with exercise. Despite this, within individuals, the decrease in molar sum of circulating BCAAs was the best metabolic predictor of improvement in IS. Circulating glycine levels were higher in Control and OW-Trained vs OW-Untrained, and urinary metabolic profiling suggests that exercise induces more efficient elimination of excess acyl groups derived from BCAA and aromatic amino acid (AA) metabolism via formation of urinary glycine adducts. CONCLUSIONS/INTERPRETATION: A mechanism involving more efficient elimination of excess acyl groups derived from BCAA and aromatic AA metabolism via glycine conjugation in the liver, rather than increased BCAA disposal through oxidation and turnover, may mediate interactions between exercise, BCAA metabolism and IS. TRIAL REGISTRATION: Clinicaltrials.gov NCT01786941.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Ejercicio Físico/fisiología , Glicina/metabolismo , Resistencia a la Insulina/fisiología , Sobrepeso/metabolismo , Entrenamiento de Fuerza , Adulto , Glucemia/metabolismo , Técnica de Clampeo de la Glucosa , Humanos , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Sobrepeso/terapia , Resultado del Tratamiento
7.
Front Physiol ; 14: 1199763, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520827

RESUMEN

The purpose of this secondary analysis was to determine what portion of the effects of a Diabetes Prevention Program-like intervention on metabolic syndrome (MetS) could be achieved with exercise alone, as well as to determine the relative importance of exercise intensity and amount to the total exercise effect on MetS. Sedentary, overweight adults with prediabetes were randomly assigned to one of four 6-month interventions: 1) low-amount/moderate-intensity (10 kcal/kg/week at 50% peak V˙O2); 2) high-amount/moderate-intensity (16 kcal/kg/week at 50% peak V˙O2); 3) high-amount/vigorous-intensity (16 kcal/kg/week at 75% peak V˙O2); or 4) diet (7% weight loss) plus low-amount/moderate-intensity (10 kcal/kg/week at 50% peak V˙O2). The primary outcome of this secondary analysis was change in the MetS z-score. A total of 130 participants had complete data for all five Adult Treatment Panel (ATP) III MetS criteria. The diet-and-exercise group statistically outperformed the MetS z-score and the ATP III score compared to the exercise alone group. Aerobic exercise alone achieved 24%-50% of the total effect of the combined diet-and-exercise intervention on the MetS score. Low-amount moderate-intensity exercise quantitatively performed equal to or better than the interventions of high-amount moderate-intensity or high-amount vigorous-intensity exercise in improving the MetS score. The combined diet-and-exercise intervention remains more efficacious in improving the MetS z-score. However, all three exercise interventions alone showed improvements in the MetS z-score, suggesting that a modest amount of moderate-intensity exercise is all that is required to achieve approximately half the effect of a diet-and-exercise intervention on the MetS. Clinical Trial Registration: clinicaltrials.gov, identifier NCT00962962.

8.
Am Heart J ; 164(1): 117-24, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22795291

RESUMEN

BACKGROUND: The standard clinical approach for reducing cardiovascular disease risk due to dyslipidemia is to prescribe changes in diet and physical activity. The purpose of the current study was to determine if, across a range of dietary patterns, there were variable lipoprotein responses to an aerobic exercise training intervention. METHODS: Subjects were participants in the STRRIDE I, a supervised exercise program in sedentary, overweight subjects randomized to 6 months of inactivity or 1 of 3 aerobic exercise programs. To characterize diet patterns observed during the study, we calculated a modified z-score that included intakes of total fat, saturated fat, trans fatty acids, cholesterol, omega-3 fatty acids, and fiber as compared with the 2006 American Heart Association diet recommendations. Linear models were used to evaluate relationships between diet patterns and exercise effects on lipoproteins/lipids. RESULTS: Independent of diet, exercise had beneficial effects on low-density lipoprotein cholesterol particle number, low-density lipoprotein cholesterol size, high-density lipoprotein cholesterol, high-density lipoprotein cholesterol size, and triglycerides (P < .05 for all). However, having a diet pattern that closely adhered to American Heart Association recommendations was not related to changes in these or any other serum lipids or lipoproteins in any of the exercise groups. CONCLUSIONS: We found that even in sedentary individuals whose habitual diets vary in the extent of adherence to AHA dietary recommendations, a rigorous, supervised exercise intervention can achieve significant beneficial lipid effects.


Asunto(s)
HDL-Colesterol/sangre , LDL-Colesterol/sangre , Dieta , Ejercicio Físico , Triglicéridos/sangre , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
9.
J Clin Endocrinol Metab ; 107(9): 2500-2510, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35775723

RESUMEN

CONTEXT: Glucagon-like peptide 1 (GLP-1), an insulinotropic peptide released into the circulation from intestinal enteroendocrine cells, is considered a hormonal mediator of insulin secretion. However, the physiological actions of circulating GLP-1 have been questioned because of the short half-life of the active peptide. Moreover, there is mounting evidence for localized, intra-islet mediation of GLP-1 receptor (GLP-1r) signaling including a role for islet dipeptidyl-peptidase 4 (DPP4). OBJECTIVE: To determine whether GLP-1r signaling contributes to insulin secretion in the absence of enteral stimulation and increased plasma levels, and whether this is affected by DPP4. METHODS: Single-site study conducted at an academic medical center of 20 nondiabetic subjects and 13 subjects with type 2 diabetes. This was a crossover study in which subjects received either a DPP4 inhibitor (DPP4i; sitagliptin) or placebo on 2 separate days. On each day they received a bolus of intravenous (IV) arginine during sequential 60-minute infusions of the GLP-1r blocker exendin[9-39] (Ex-9) and saline. The main outcome measures were arginine-stimulated secretion of C-Peptide (C-PArg) and insulin (InsArg). RESULTS: Plasma GLP-1 remained at fasting levels throughout the experiments and IV arginine stimulated both α- and ß-cell secretion in all subjects. Ex-9 infusion reduced C-PArg in both the diabetic and nondiabetic groups by ~14% (P < .03 for both groups). Sitagliptin lowered baseline glycemia but did not affect the primary measures of insulin secretion. However, a significant interaction between sitagliptin and Ex-9 suggested more GLP-1r activation with DPP4i treatment in subjects with diabetes. CONCLUSION: GLP-1r activation contributes to ß-cell secretion in diabetic and nondiabetic people during α-cell activation, but in the absence of increased circulating GLP-1. These results are compatible with regulation of ß-cells by paracrine signals from α-cells. This process may be affected by DPP4 inhibition.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Arginina/uso terapéutico , Estudios Cruzados , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dipeptidil Peptidasa 4/metabolismo , Ayuno , Péptido 1 Similar al Glucagón , Humanos , Insulina/metabolismo , Secreción de Insulina , Fosfato de Sitagliptina/farmacología , Fosfato de Sitagliptina/uso terapéutico
10.
Sports Med Open ; 8(1): 90, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35834023

RESUMEN

As type 2 diabetes remains a leading cause of morbidity and mortality, identifying the most appropriate preventive treatment early in the development of disease is an important public health matter. In general, lifestyle interventions incorporating exercise and weight loss via caloric restriction improve cardiometabolic risk by impacting several key markers of insulin sensitivity and glucose homeostasis. However, variations in the effects of specific types of exercise interventions on these markers have led to conflicting results surrounding the optimal amount, intensity, and mode of exercise for optimal effects. Moreover, the addition of weight loss via caloric restriction to exercise interventions appears to differentially impact changes in body composition, metabolism, and insulin sensitivity compared to exercise alone. Determining the optimal amount, intensity, and mode of exercise having the most beneficial impact on glycemic status is both: (1) clinically important to provide guidelines for appropriate exercise prescription; and (2) physiologically important to understand the pathways by which exercise-with and without weight loss-impacts glycemic status to enhance precision lifestyle medicine. Thus, the purposes of this narrative review are to: (1) summarize findings from the three Studies of a Targeted Risk Reduction Intervention through Defined Exercise (STRRIDE) randomized trials regarding the differential effects of exercise amount, intensity, and mode on insulin action and glucose homeostasis markers; and (2) compare the STRRIDE findings to other published dose-response exercise trials in order to piece together the various physiologic pathways by which specific exercise interventions-with or without weight loss-impact glycemic status.

11.
Artículo en Inglés | MEDLINE | ID: mdl-35086944

RESUMEN

INTRODUCTION: To determine the relative contributions of various amounts and intensities of exercise alone to a combined lifestyle intervention on health-related quality of life (HrQoL) measures. RESEARCH DESIGN AND METHODS: Participants (n=162) were sedentary, overweight/obese, with pre-diabetes, and randomized to one of four 6-month interventions: (1) high amount/moderate intensity exercise-energy expenditure of 16 kcal/kg of body weight/week (KKW) at 50% oxygen consumption (V̇O2) reserve; (2) high/vigorous-16 KKW at 75% V̇O2 reserve; (3) low/moderate-10 KKW at 50% V̇O2 reserve; (4) low/moderate plus diet-10 KKW at 50% V̇O2 reserve plus a calorically restricted diet. The 36-Item Short-Form Survey (SF-36) and Satisfaction with Physical Function and Appearance (SPF/SPA) survey were assessed at baseline and post-intervention. Analyses of covariance determined differences in change scores among groups (p<0.05). Paired t-tests determined significant pre-intervention versus post-intervention scores within groups (p<0.05). RESULTS: Across the intervention, all groups (p<0.05) improved the physical component, SPF, and SPA scores. Only the low/moderate/diet group (p<0.001) significantly improved the mental component score. The high/vigorous group achieved 84.5% of the low/moderate/diet group effect for change in physical component score, and the low/moderate group achieved 83.7% of the low/moderate/diet group effect for change in mental component score. CONCLUSIONS: In general, a low amount of moderate intensity exercise combined with diet was the most effective intervention for improving HrQoL. Of the exercise-only interventions, vigorous intensity exercise provided the greatest impact on changes in physical function. On the other hand, low amounts of moderate intensity exercise provided the greatest impact on mental well-being, potentially being a more attainable exercise dose for previously sedentary individuals with pre-diabetes to achieve.


Asunto(s)
Ejercicio Físico , Calidad de Vida , Dieta , Humanos , Estilo de Vida , Obesidad/terapia
12.
Sports Med ; 52(12): 2837-2851, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35781787

RESUMEN

Although many studies have assumed variability reflects variance caused by exercise training, few studies have examined whether interindividual differences in trainability are present following exercise training. The present individual participant data (IPD) meta-analysis sought to: (1) investigate the presence of interindividual differences in trainability for cardiorespiratory fitness (CRF), waist circumference, and body mass; and (2) examine the influence of exercise training and potential moderators on the probability that an individual will experience clinically important differences. The IPD meta-analysis combined data from 1879 participants from eight previously published randomized controlled trials. We implemented a Bayesian framework to: (1) test the hypothesis of interindividual differences in trainability by comparing variability in change scores between exercise and control using Bayes factors; and (2) compare posterior predictions of control and exercise across a range of moderators (baseline body mass index (BMI) and exercise duration, intensity, amount, mode, and adherence) to estimate the proportions of participants expected to exceed minimum clinically important differences (MCIDs) for all three outcomes. Bayes factors demonstrated a lack of evidence supporting a high degree of variance attributable to interindividual differences in trainability across all three outcomes. These findings indicate that interindividual variability in observed changes are likely due to measurement error and external behavioural factors, not interindividual differences in trainability. Additionally, we found that a larger proportion of exercise participants were expected to exceed MCIDs compared with controls for all three outcomes. Moderator analyses identified that larger proportions were associated with a range of factors consistent with standard exercise theory and were driven by mean changes. Practitioners should prescribe exercise interventions known to elicit large mean changes to increase the probability that individuals will experience beneficial changes in CRF, waist circumference and body mass.


Asunto(s)
Capacidad Cardiovascular , Humanos , Circunferencia de la Cintura , Teorema de Bayes , Ejercicio Físico , Índice de Masa Corporal
13.
Am J Physiol Endocrinol Metab ; 301(5): E1033-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21846904

RESUMEN

While the benefits of exercise are clear, many unresolved issues surround the optimal exercise prescription. Many organizations recommend aerobic training (AT) and resistance training (RT), yet few studies have compared their effects alone or in combination. The purpose of this study, part of Studies Targeting Risk Reduction Interventions Through Defined Exercise-Aerobic Training and/or Resistance Training (STRRIDE/AT/RT), was to compare the effects of AT, RT, and the full combination (AT/RT) on central ectopic fat, liver enzymes, and fasting insulin resistance [homeostatic model assessment (HOMA)]. In a randomized trial, 249 subjects [18-70 yr old, overweight, sedentary, with moderate dyslipidemia (LDL cholesterol 130-190 mg/dl or HDL cholesterol ≤ 40 mg/dl for men or ≤ 45 mg/dl for women)] performed an initial 4-mo run-in period. Of these, 196 finished the run-in and were randomized into one of the following 8-mo exercise-training groups: 1) RT, which comprised 3 days/wk, 8 exercises, 3 sets/exercise, 8-12 repetitions/set, 2) AT, which was equivalent to ∼19.2 km/wk (12 miles/wk) at 75% peak O(2) uptake, and 3) full AT + full RT (AT/RT), with 155 subjects completing the intervention. The primary outcome variables were as follows: visceral and liver fat via CT, plasma liver enzymes, and HOMA. AT led to significant reductions in liver fat, visceral fat, alanine aminotransferase, HOMA, and total and subcutaneous abdominal fat (all P < 0.05). RT resulted in a decrease in subcutaneous abdominal fat (P < 0.05) but did not significantly improve the other variables. AT was more effective than RT at improving visceral fat, liver-to-spleen ratio, and total abdominal fat (all P < 0.05) and trended toward a greater reduction in liver fat score (P < 0.10). The effects of AT/RT were statistically indistinguishable from the effects of AT. These data show that, for overweight and obese individuals who want to reduce measures of visceral fat and fatty liver infiltration and improve HOMA and alanine aminotransferase, a moderate amount of aerobic exercise is the most time-efficient and effective exercise mode.


Asunto(s)
Ejercicio Físico/fisiología , Resistencia a la Insulina , Grasa Intraabdominal/metabolismo , Hígado/enzimología , Hígado/metabolismo , Sobrepeso/terapia , Entrenamiento de Fuerza , Adolescente , Adulto , Anciano , Técnicas de Diagnóstico Endocrino , Terapia por Ejercicio/métodos , Femenino , Homeostasis/fisiología , Humanos , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/fisiología , Masculino , Persona de Mediana Edad , Modelos Biológicos , Sobrepeso/diagnóstico , Sobrepeso/enzimología , Sobrepeso/metabolismo , Conducta de Reducción del Riesgo , Adulto Joven
14.
Front Physiol ; 12: 626142, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613319

RESUMEN

BACKGROUND: Lipoprotein Insulin Resistance Index (LP-IR) and Diabetes Risk Index are novel spectroscopic multimarkers of insulin resistance and type 2 diabetes risk. As the Studies of a Targeted Risk Reduction Intervention through Defined Exercise (STRRIDE) randomized trials have previously demonstrated the ability of exercise training to improve traditional markers of insulin action, the aim of this study was to examine the effects of exercise amount, intensity, and mode on LP-IR and the Diabetes Risk Index. METHODS: A total of 503 adults with dyslipidemia [STRRIDE I (n = 194), STRRIDE AT/RT (n = 139)] or prediabetes [STRRIDE-PD (n = 170)] were randomized to control or one of 10 exercise interventions, ranging from doses of 8-23 kcal/kg/week; intensities of 50-75% V̇O2peak; and durations of 6-8 months. Two groups included resistance training and one included dietary intervention (7% weight loss goal). Fasting plasma samples were obtained at baseline and 16-24 h after the final exercise bout. LP-IR, the Diabetes Risk Index, and concentrations of the branched chain amino acids valine and leucine were determined using nuclear magnetic resonance spectroscopy. LP-IR and the Diabetes Risk Index scores range from 0-100 and 1-100, respectively (greater scores indicate greater risk). Paired t-tests determined significance within groups (p < 0.05). RESULTS: After training, six exercise groups significantly improved LP-IR (ranging from -4.4 ± 8.2 to -12.4 ± 14.1), and four exercise groups significantly improved the Diabetes Risk Index (ranging from -2.8 ± 8.2 to -8.3 ± 10.4). The most beneficial interventions for both LP-IR and the Diabetes Risk Index were low amount/moderate intensity aerobic, aerobic plus resistance, and aerobic plus diet. SUMMARY: Multiple exercise interventions improved LP-IR and the Diabetes Risk Index. In those with dyslipidemia, adding resistance to aerobic training elicited a synergistic effect on insulin resistance and type 2 diabetes risk. In individuals with prediabetes, combining a dietary intervention and weight loss with aerobic training resulted in the most robust type 2 diabetes risk improvement.

15.
Front Cardiovasc Med ; 8: 638929, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869303

RESUMEN

Background: The goal was studying the differential effects of aerobic training (AT) vs. resistance training (RT) on cardiac and peripheral arterial capacity on cardiopulmonary (CP) and peripheral vascular (PV) function in sedentary and obese adults. Methods: In a prospective randomized controlled trial, we studied the effects of 6 months of AT vs. RT in 21 subjects. Testing included cardiac and vascular ultrasoundography and serial CP for ventricular-arterial coupling (Ees/Ea), strain-based variables, brachial artery flow-mediated dilation (BAFMD), and peak VO2 (pVO2; mL/kg/min) and peak O2-pulse (O2p; mL/beat). Results: Within the AT group (n = 11), there were significant increases in rVO2 of 4.2 mL/kg/min (SD 0.93) (p = 0.001); O2p of 1.9 mL/beat (SD 1.3) (p = 0.008) and the brachial artery post-hyperemia peak diameter 0.18 mm (SD 0.08) (p = 0.05). Within the RT group (n = 10) there was a significant increase in left ventricular end diastolic volume 7.0 mL (SD 9.8; p = 0.05) and percent flow-mediated dilation (1.8%) (SD 0.47) (p = 0.004). Comparing the AT and RT groups, post exercise, rVO2 2.97, (SD 1.22), (p = 0.03), O2p 0.01 (SD 1.3), (p = 0.01), peak hyperemic blood flow volume (1.77 mL) (SD 140.69) (p = 0.009), were higher in AT, but LVEDP 115 mL (SD 7.0) (p = 0.05) and Ees/Ea 0.68 mmHg/ml (SD 0.60) p = 0.03 were higher in RT. Discussion: The differential effects of AT and RT in this hypothesis generating study have important implications for exercise modality and clinical endpoints.

16.
Sports Med ; 51(8): 1785-1797, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33704698

RESUMEN

OBJECTIVE: This study tested the hypothesis that greater mean changes in cardiorespiratory fitness (CRF), in either the absence or presence of reduced interindividual variability, explain larger CRF response rates following higher doses of exercise training. METHODS: We retrospectively analyzed CRF data from eight randomized controlled trials (RCT; n = 1590 participants) that compared at least two doses of exercise training. CRF response rates were calculated as the proportion of participants with individual confidence intervals (CIs) placed around their observed response that lay above 0.5 metabolic equivalents (MET). CIs were calculated using no-exercise control group-derived typical errors and were placed around each individual's observed CRF response (post minus pre-training CRF). CRF response rates, mean changes, and interindividual variability were compared across exercise groups within each RCT. RESULTS: Compared with lower doses, higher doses of exercise training yielded larger CRF response rates in eight comparisons. For most of these comparisons (7/8), the higher dose of exercise training had a larger mean change in CRF but similar interindividual variability. Exercise groups with similar CRF response rates also had similar mean changes. CONCLUSION: Our findings demonstrate that larger CRF response rates following higher doses of exercise training are attributable to larger mean changes rather than reduced interindividual variability. Following a given dose of exercise training, the proportion of individuals expected to improve their CRF beyond 0.5 METs is unrelated to the heterogeneity of individual responses.


Asunto(s)
Capacidad Cardiovascular , Ejercicio Físico , Humanos , Aptitud Física , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Retrospectivos
17.
Front Sports Act Living ; 2: 620300, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33644749

RESUMEN

Purpose: The main purpose of this study was to determine the differential effects of aerobic training (AT), resistance training (RT), and a combination of aerobic and resistance training (AT/RT) on changes in self-rated HrQoL measures, including the Short-Form 36 (SF-36) survey and Satisfaction with Physical Function and Appearance survey. We also sought to determine if combination training (AT/RT) has a more or less additive effect compared to AT or RT alone on self-rated HrQoL measures. Materials and Methods: Participants (n = 137) completed one of three 8-month exercise interventions: (1) AT: 14 kcal exercise expenditure per kg of body weight per week (KKW; equivalent to roughly 12 miles/week) at 65-80% of peak oxygen consumption; (2) RT: 3 days per week, 8 exercises, 3 sets per exercise, 8-12 repetitions per set; (3) AT/RT: full combination of the AT and RT interventions. The SF-36 survey, Satisfaction with Physical Function and Appearance survey, physical fitness, and anthropometrics were assessed at baseline and post-intervention. Paired t-tests determined significant pre- vs. post-intervention scores within groups (p < 0.05). Analyses of covariance determined differences in change scores among groups (p < 0.05). Results: On average, participants were 49.0 ± 10.6 years old, obese (BMI: 30.6 ± 3.2 kg/m2), female (57.7%), and Caucasian (84.7%). Following the 8-month intervention, exercise groups improved peak VO2 (all groups), strength (RT and AT/RT), and anthropometric measures (AT and AT/RT). For the SF-36, RT (p = 0.03) and AT/RT (p < 0.001) significantly improved their physical component score; only AT/RT (p < 0.001) significantly improved their mental component score. Notably, all groups significantly improved both their satisfaction with physical function and appearance scores (All Groups: p < 0.001 for both outcomes). Conclusions: We found that aerobic, resistance, or combination exercise training improves several components of self-rated HrQoL, including physical function, appearance, and mental well-being. Clinical Trial Registration: No. NCT00275145.

18.
Front Immunol ; 11: 729, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431698

RESUMEN

Neutrophil dysfunction is a common feature of aging, and is associated with the pathogenesis of many age-related diseases, including type 2 diabetes mellitus (T2DM). Although exercise training improves metabolic health, decreases risk of T2DM, and is associated with improving neutrophil functions, involvement in regular physical activity declines with age. The aim of this study was to determine if neutrophil functions could be improved in association with changes in fitness and metabolic parameters in older adults at risk for T2DM using 10-weeks of low volume high-intensity interval exercise training (HIIT). Ten older (71 ± 5 years) sedentary adults with prediabetes (HbA1c: 6.1 ± 0.3%) completed 10 weeks of a supervised HIIT program. Three 30 min sessions/week consisted of ten 60 s intervals of low intensity [50-60% heart rate reserve (HRR)] separated with similar durations of high intensity intervals (80-90% HRR). Before and after training, glucose and insulin sensitivity, neutrophil chemotaxis, bacterial phagocytosis, reactive oxygen species (ROS) production, and mitochondrial functions were assessed. Exercise-mediated changes in cardiorespiratory fitness (VO2peak) and neutrophil functions were compared to six young (23 ± 1 years) healthy adults. Following training, significant reductions in fasting glucose and insulin were accompanied by improved glucose control and insulin sensitivity (all p < 0.05). Before exercise training, VO2peak in the old participants was significantly less than that of the young controls (p < 0.001), but increased by 16 ± 11% following training (p = 0.002) resulting in a 6% improvement of the deficit. Neutrophil chemotaxis, phagocytosis and stimulated ROS production were significantly less than that of the young controls, while basal ROS were higher before training (all p < 0.05). Following training, chemotaxis, phagocytosis and stimulated ROS increased while basal ROS decreased, similar to levels observed in the young controls (all p < 0.05) and reducing the deficit of the young controls between 2 and 154%. In five of the adults with prediabetes, neutrophil mitochondrial functions were significantly poorer than the six young controls before training. Following training, mitochondrial functions improved toward those observed in young controls (all p < 0.05), reducing the deficit of the young controls between 14.3 and 451%. Ten weeks of HIIT in older adults at risk for T2DM reduced disease risk accompanied by improved primary and bioenergetic neutrophil functions. Our results are consistent with a reduced risk of infections mediated by relationships in exercise induced systemic and cellular metabolic features. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02441205, registered on May 12th, 2015.


Asunto(s)
Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/rehabilitación , Terapia por Ejercicio/métodos , Entrenamiento de Intervalos de Alta Intensidad/métodos , Neutrófilos/inmunología , Estado Prediabético/inmunología , Estado Prediabético/rehabilitación , Rejuvenecimiento , Caminata , Anciano , Envejecimiento/inmunología , Movimiento Celular/inmunología , Diabetes Mellitus Tipo 2/sangre , Femenino , Hemoglobina Glucada/análisis , Humanos , Masculino , Proyectos Piloto , Estado Prediabético/sangre , Riesgo , Resultado del Tratamiento , Adulto Joven
19.
J Appl Physiol (1985) ; 106(4): 1079-85, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19196913

RESUMEN

The purpose of this study was to determine whether exercise prescriptions differing in volume or intensity also differ in their ability to retain insulin sensitivity during an ensuing period of training cessation. Sedentary, overweight/obese subjects were assigned to one of three 8-mo exercise programs: 1) low volume/moderate intensity [equivalent of approximately 12 miles/wk, 1,200 kcal/wk at 40-55% peak O(2) consumption (Vo(2peak)), 200 min exercise/wk], 2) low volume/vigorous intensity ( approximately 12 miles/wk, 1,200 kcal/wk at 65-80% Vo(2peak), 125 min/wk), and 3) high volume/vigorous intensity ( approximately 20 miles/wk, 2,000 kcal/wk at 65-80% Vo(2peak), 200 min/wk). Insulin sensitivity (intravenous glucose tolerance test, S(I)) was measured when subjects were sedentary and at 16-24 h and 15 days after the final training bout. S(I) increased with training compared with the sedentary condition (P < or = 0.05) at 16-24 h with all of the exercise prescriptions. S(I) decreased to sedentary, pretraining values after 15 days of training cessation in the low-volume/vigorous-intensity group. In contrast, at 15 days S(I) was significantly elevated compared with sedentary (P < or = 0.05) in the prescriptions utilizing 200 min/wk (low volume/moderate intensity, high volume/vigorous intensity). In the high-volume/vigorous-intensity group, indexes of muscle mitochondrial density followed a pattern paralleling insulin action by being elevated at 15 days compared with pretraining; this trend was not evident in the low-volume/moderate-intensity group. These findings suggest that in overweight/obese subjects a relatively chronic persistence of enhanced insulin action may be obtained with endurance-oriented exercise training; this persistence, however, is dependent on the characteristics of the exercise training performed.


Asunto(s)
Ejercicio Físico/fisiología , Resistencia a la Insulina/fisiología , Aptitud Física/fisiología , Umbral Anaerobio/fisiología , Índice de Masa Corporal , Peso Corporal/fisiología , Dislipidemias/sangre , Dislipidemias/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Glucógeno/metabolismo , Homeostasis/fisiología , Humanos , Insulina/sangre , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Obesidad/fisiopatología , Consumo de Oxígeno/fisiología
20.
Front Physiol ; 10: 1401, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798463

RESUMEN

BACKGROUND: Understanding group responses to a given exercise exposure is becoming better developed; however, understanding of individual responses to specific exercise exposures is significantly underdeveloped and must advance before personalized exercise medicine can become a functional reality. Herein, utilizing data from the STRRIDE studies, we address some of the key issues surrounding our efforts to develop better understanding of individual exercise responsiveness. METHODS: We assessed individual cardiometabolic and cardiorespiratory fitness responses in subjects successfully completing STRRIDE I (n = 227) and STRRIDE II (n = 155). Subjects were previously sedentary, overweight or obese men and women with mild-to-moderate dyslipidemia. Subjects were randomized to either an inactive control group or to an exercise training program. Training groups varied to test the differential effects of exercise amount, intensity, and mode on cardiometabolic health outcomes. Measures included fasting plasma glucose, insulin, and lipids; blood pressure, minimal waist circumference, visceral adipose tissue, and peak VO2. Absolute change scores were calculated for each subject as post-intervention minus pre-intervention values in order to evaluate the heterogeneity of health factor responsiveness to exercise training. RESULTS: For subjects completing one of the aerobic training programs, change in peak VO2 ranged from a loss of 37% to a gain of 77%. When ranked by magnitude of change, we observed discordant responses among changes in peak VO2 with changes in visceral adipose tissue, HDL-C, triglycerides, and fasting plasma insulin. There was also not a clear, direct relationship observed between magnitudes of individual response in the aforementioned variables with aerobic training adherence levels. This same pattern of highly variable and discordant responses was displayed even when considering subjects with adherence levels greater than 70%. CONCLUSION: Our findings illustrate the unclear relationship between magnitude of individual response for a given outcome with training adherence and specific exercise exposure. These discordant and heterogeneous responses highlight the difficult nature of developing understanding for how individuals will respond to any given exposure. Further investigation into the biological, physiological, and genetics factors affecting individual responsiveness is vital to making personalized exercise medicine a reality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA