Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 44(20): 5013-5016, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31613251

RESUMEN

Four-dimensional (x,y,z,t) x-ray computed tomography was demonstrated in an optically complex spray using an imaging system consisting of three x-ray sources and three high-speed detectors. The x-ray sources consisted of high-flux rotating anode x-ray tube sources that illuminated the spray from three lines of sight. The absorption, along each absorption path, was collected using a CsI phosphor plate and imaged by a high-speed intensified CMOS camera at 20 kHz. The radiographs were converted to a quantitative equivalent path length (EPL) of liquid using a variable attenuation coefficient to account for beam hardening. The EPL data were then reconstructed using the algebraic reconstruction technique into high-speed time sequences of the three-dimensional liquid mass distribution.

2.
Sci Rep ; 8(1): 2874, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440676

RESUMEN

Multiphoton ionization (MPI) is a fundamental first step in high-energy laser-matter interaction and is important for understanding the mechanism of plasma formation. With the discovery of MPI more than 50 years ago, there were numerous attempts to determine the basic physical constants of this process in direct experiments, namely photoionization rates and cross-sections of the MPI; however, no reliable data was available until now, and the spread in the literature values often reaches 2-3 orders of magnitude. This is due to the inability to conduct absolute measurements of plasma electron numbers generated by MPI, which leads to uncertainties and, sometimes, contradictions between MPI cross-section values utilized by different researchers across the field. Here, we report the first direct measurement of absolute plasma electron numbers generated at MPI of air, and subsequently we precisely determine the ionization rate and cross-section of eight-photon ionization of oxygen molecule by 800 nm photons σ8 = (3.3 ± 0.3)×10-130 W-8m16s-1. The method, based on the absolute measurement of the electron number created by MPI using elastic scattering of microwaves off the plasma volume in Rayleigh regime, establishes a general approach to directly measure and tabulate basic constants of the MPI process for various gases and photon energies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA