RESUMEN
Compartmentalized meningeal inflammation is thought to represent one of the key players in the pathogenesis of cortical demyelination in multiple sclerosis. PET targeting the 18â kDa mitochondrial translocator protein (TSPO) is a molecular-specific approach to quantifying immune cell-mediated density in the cortico-meningeal tissue compartment in vivo. This study aimed to characterize cortical and meningeal TSPO expression in a heterogeneous cohort of multiple sclerosis cases using in vivo simultaneous MR-PET with 11C-PBR28, a second-generation TSPO radioligand, and ex vivo immunohistochemistry. Forty-nine multiple sclerosis patients (21 with secondary progressive and 28 with relapsing-remitting multiple sclerosis) with mixed or high affinity binding for 11C-PBR28 underwent 90-min 11C-PBR28 simultaneous MR-PET. Tracer binding was measured using 60-90â min normalized standardized uptake value ratios sampled at mid-cortical depth and â¼3â mm above the pial surface. Data in multiple sclerosis patients were compared to 21 age-matched healthy controls. To characterize the nature of 11C-PBR28 PET uptake, the meningeal and cortical lesion cellular expression of TSPO was further described in post-mortem brain tissue from 20 cases with secondary progressive multiple sclerosis and five age-matched healthy donors. Relative to healthy controls, patients with multiple sclerosis exhibited abnormally increased TSPO signal in the cortex and meningeal tissue, diffusively in progressive disease and more localized in relapsing-remitting multiple sclerosis. In multiple sclerosis, increased meningeal TSPO levels were associated with increased Expanded Disability Status Scale scores (P = 0.007, by linear regression). Immunohistochemistry, validated using in situ sequencing analysis, revealed increased TSPO expression in the meninges and adjacent subpial cortical lesions of post-mortem secondary progressive multiple sclerosis cases relative to control tissue. In these cases, increased TSPO expression was related to meningeal inflammation. Translocator protein immunostaining was detected on meningeal MHC-class II+ macrophages and cortical-activated MHC-class II+ TMEM119+ microglia. In vivo arterial blood data and neuropathology showed that endothelial binding did not significantly account for increased TSPO cortico-meningeal expression in multiple sclerosis. Our findings support the use of TSPO-PET in multiple sclerosis for imaging in vivo inflammation in the cortico-meningeal brain tissue compartment and provide in vivo evidence implicating meningeal inflammation in the pathogenesis of the disease.
Asunto(s)
Meninges , Esclerosis Múltiple , Tomografía de Emisión de Positrones , Receptores de GABA , Humanos , Receptores de GABA/metabolismo , Receptores de GABA/genética , Femenino , Masculino , Persona de Mediana Edad , Adulto , Tomografía de Emisión de Positrones/métodos , Meninges/metabolismo , Meninges/diagnóstico por imagen , Meninges/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Anciano , Corteza Cerebral/metabolismo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Imagen por Resonancia Magnética , Esclerosis Múltiple Crónica Progresiva/metabolismo , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/patología , Acetamidas , PiridinasRESUMEN
We report two patients who developed atypical, disseminated herpes zoster infections while on dimethyl fumarate (DMF) treatment, one with varicella zoster virus (VZV) encephalitis and another with herpes zoster oticus resulting in lasting motor and sensory deficits. We recommend vaccination against VZV prior to DMF initiation be incorporated as standard of care, as ensuring patients are protected against VZV before starting DMF can prevent such severe outcomes.
RESUMEN
Cases of herpes zoster (HZ) in patients with MS on natalizumab (NTZ) have been documented. In this study, we assessed lymphocyte subsets in NTZ-treated patients with HZ compared to matched controls without HZ. Twenty unvaccinated patients developed HZ while on NTZ for an incidence rate of 12.3 per 1000 patient-years. These patients had lower CD8+% and higher CD4+:CD8+ ratios (p ⩽ 0.01) than non-HZ matched controls. Two patients with relapsing-remitting MS developed HZ twice while on NTZ. These findings underscore the importance of pre-NTZ HZ vaccination due to potential HZ risk.
Asunto(s)
Herpes Zóster , Factores Inmunológicos , Esclerosis Múltiple Recurrente-Remitente , Natalizumab , Humanos , Natalizumab/efectos adversos , Natalizumab/uso terapéutico , Herpes Zóster/inmunología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Factores Inmunológicos/efectos adversos , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/inmunología , Relación CD4-CD8RESUMEN
BACKGROUND: Paramagnetic rim white matter (WM) lesions (PRL) are thought to be a main driver of non-relapsing multiple sclerosis (MS) progression. It is unknown whether cerebrospinal fluid (CSF)-soluble factors diffusing from the ventricles contribute to PRL formation. OBJECTIVE: To investigate the distribution of PRL and non-rim brain WM lesions as a function of distance from ventricular CSF, their relationship with cortical lesions, the contribution of lesion phenotype, and localization to neurological disability. METHODS: Lesion count and volume of PRL, non-rim WM, leukocortical lesion (LCL), and subpial/intracortical lesions were obtained at 7-T. The brain WM was divided into 1-mm-thick concentric rings radiating from the ventricles to extract PRL and non-rim WM lesion volume from each ring. RESULTS: In total, 61 MS patients with ⩾1 PRL were included in the study. Both PRL and non-rim WM lesion volumes were the highest in the periventricular WM and declined with increasing distance from ventricles. A CSF distance-independent association was found between non-rim WM lesions, PRL, and LCL, but not subpial/intracortical lesions. Periventricular non-rim WM lesion volume was the strongest predictor of neurological disability. CONCLUSIONS: Non-rim and PRL share a gradient of distribution from the ventricles toward the cortex, suggesting that CSF proximity equally impacts the prevalence of both lesion phenotypes.
Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Ventrículos Cerebrales/diagnóstico por imagen , Ventrículos Cerebrales/patologíaRESUMEN
BACKGROUND: 11C-PBR28 positron emission tomography (PET), targeting the translocator protein, and paramagnetic rim lesions (PRL) have emerged as promising imaging markers of MS chronic inflammation. No consensus on which is the optimal marker exists. OBJECTIVES: To investigate the ability of 11C-PBR28 PET and PRL assessment to identify chronic inflammation in white matter (WM) MS lesions and their relation to neurological impairment. METHODS: Based on 11C-PBR28 uptake, brain WM lesions from 30 MS patients were classified as PET active or inactive. The PRL presence was assessed on 7T phase reconstructions, T1/T2 ratio was calculated to measure WM microstructural integrity. RESULTS: Less than half (44%) of non-PRL WM lesions were active on 11C-PBR28 imaging either throughout the lesion (whole active) or at its periphery. PET peripherally active lesions and PRL did not differ in T1/T2 ratio and 11C-PBR28 uptake. A positive correlation was observed between PRL and active PET lesion count. Whole active PET lesion volume was the strongest predictor (ß = 0.97, p < 0.001) of increased Expanded Disability Status Scale scores. CONCLUSION: 11C-PBR28 imaging reveals more active WM lesions than 7T PRL assessment. Although PRL and PET active lesion counts are related, neurological disability is better explained by PET whole active lesion volume.
RESUMEN
BACKGROUND: Dimethyl fumarate (DMF) depletes CD8+ and CD4+ T cells, and cases of herpes zoster (HZ) in patients with multiple sclerosis (MS) on DMF have been documented. OBJECTIVES: To evaluate lymphocyte subsets in patients with MS who developed HZ on DMF (Tecfidera) compared to matched controls who did not develop HZ. METHODS: We used linear mixed-effects models to test for differences in white blood cell count, lymphocyte percentage, absolute lymphocyte count, CD3+ percentage, absolute CD3+ count, CD4+ percentage, absolute CD4+ count, CD8+ percentage, absolute CD8+ count, and CD4+:CD8+ ratio over time in HZ and non-HZ groups. RESULTS: Eighteen patients developed HZ while on DMF. The linear mixed-effects model for CD4+:CD8+ ratio showed a significant difference between the HZ and non-HZ groups (p = 0.033). CD4+:CD8+ ratio decreased over time in the HZ group and increased over time in the non-HZ group. CONCLUSION: Patients with MS who develop HZ while on DMF have high CD4+:CD8+ ratios, suggesting an imbalance of CD4+ and CD8+ cells that may put a patient at risk for developing HZ while on DMF. This result emphasizes the need for lymphocyte subset monitoring (including CD4+:CD8+ ratios) on DMF, as well as vaccination prior to DMF initiation.
Asunto(s)
Herpes Zóster , Esclerosis Múltiple , Humanos , Dimetilfumarato/uso terapéutico , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/tratamiento farmacológico , Inmunosupresores/uso terapéutico , Recuento de Linfocitos , Linfocitos T CD8-positivos , Linfocitos T CD4-PositivosRESUMEN
BACKGROUND: Thalamic pathology is a marker for neurodegeneration and multiple sclerosis (MS) disease progression. OBJECTIVE: To characterize (1) the morphology of thalamic lesions, (2) their relation to cortical and white matter (WM) lesions, and (3) clinical measures, and to assess (4) the imaging correlates of thalamic atrophy. METHODS: A total of 90 MS patients and 44 healthy controls underwent acquisition of 7 Tesla images for lesion segmentation and 3 Tesla scans for atrophy evaluation. Thalamic lesions were classified according to the shape and the presence of a central venule. Regression analysis identified the predictors of (1) thalamic atrophy, (2) neurological disability, and (3) information processing speed. RESULTS: Thalamic lesions were mostly ovoid than periventricular, and for the great majority (78%) displayed a central venule. Lesion volume in the thalamus, cortex, and WM did not correlate with each other. Thalamic atrophy was only associated with WM lesion volume (p = 0.002); subpial and WM lesion volumes were associated with neurological disability (p = 0.016; p < 0.001); and WM and thalamic lesion volumes were related with cognitive impairment (p < 0.001; p = 0.03). CONCLUSION: Thalamic lesions are unrelated to those in the cortex and WM, suggesting that they may not share common pathogenic mechanisms and do not contribute to thalamic atrophy. Combined WM, subpial, and thalamic lesion volumes at 7 Tesla contribute to the disease severity.
Asunto(s)
Disfunción Cognitiva , Esclerosis Múltiple , Atrofia/patología , Disfunción Cognitiva/patología , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Tálamo/diagnóstico por imagen , Tálamo/patologíaRESUMEN
We used 7 T MRI to: (i) characterize the grey and white matter pathology in the cervical spinal cord of patients with early relapsing-remitting and secondary progressive multiple sclerosis; (ii) assess the spinal cord lesion spatial distribution and the hypothesis of an outside-in pathological process possibly driven by CSF-mediated immune cytotoxic factors; and (iii) evaluate the association of spinal cord pathology with brain burden and its contribution to neurological disability. We prospectively recruited 20 relapsing-remitting, 15 secondary progressive multiple sclerosis participants and 11 age-matched healthy control subjects to undergo 7 T imaging of the cervical spinal cord and brain as well as conventional 3 T brain acquisition. Cervical spinal cord imaging at 7 T was used to segment grey and white matter, including lesions therein. Brain imaging at 7 T was used to segment cortical and white matter lesions and 3 T imaging for cortical thickness estimation. Cervical spinal cord lesions were mapped voxel-wise as a function of distance from the inner central canal CSF pool to the outer subpial surface. Similarly, brain white matter lesions were mapped voxel-wise as a function of distance from the ventricular system. Subjects with relapsing-remitting multiple sclerosis showed a greater predominance of spinal cord lesions nearer the outer subpial surface compared to secondary progressive cases. Inversely, secondary progressive participants presented with more centrally located lesions. Within the brain, there was a strong gradient of lesion formation nearest the ventricular system that was most evident in participants with secondary progressive multiple sclerosis. Lesion fractions within the spinal cord grey and white matter were related to the lesion fraction in cerebral white matter. Cortical thinning was the primary determinant of the Expanded Disability Status Scale, white matter lesion fractions in the spinal cord and brain of the 9-Hole Peg Test and cortical thickness and spinal cord grey matter cross-sectional area of the Timed 25-Foot Walk. Spinal cord lesions were localized nearest the subpial surfaces for those with relapsing-remitting and the central canal CSF surface in progressive disease, possibly implying CSF-mediated pathogenic mechanisms in lesion development that may differ between multiple sclerosis subtypes. These findings show that spinal cord lesions involve both grey and white matter from the early multiple sclerosis stages and occur mostly independent from brain pathology. Despite the prevalence of cervical spinal cord lesions and atrophy, brain pathology seems more strongly related to physical disability as measured by the Expanded Disability Status Scale.
Asunto(s)
Médula Cervical/diagnóstico por imagen , Imagen por Resonancia Magnética/tendencias , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/epidemiología , Esclerosis Múltiple Recurrente-Remitente/epidemiologíaRESUMEN
BACKGROUND: Neuroinflammation with microglia activation is thought to be closely related to cortical multiple sclerosis (MS) lesion pathogenesis. OBJECTIVE: Using 11C-PBR28 and 7 Tesla (7T) imaging, we assessed in 9 relapsing-remitting multiple sclerosis (RRMS) and 10 secondary progressive multiple sclerosis (SPMS) patients the following: (1) microglia activation in lesioned and normal-appearing cortex, (2) cortical lesion inflammatory profiles, and (3) the relationship between neuroinflammation and cortical integrity. METHODS: Mean 11C-PBR28 uptake was measured in focal cortical lesions, cortical areas with 7T quantitative T2* (q-T2*) abnormalities, and normal-appearing cortex. The relative difference in cortical 11C-PBR28 uptake between patients and 14 controls was used to classify cortical lesions as either active or inactive. Disease burden was investigated according to cortical lesion inflammatory profiles. The relation between q-T2* and 11C-PBR28 uptake along the cortex was assessed. RESULTS: 11C-PBR28 uptake was abnormally high in cortical lesions in RRMS and SPMS; in SPMS, tracer uptake was significantly increased also in normal-appearing cortex. 11C-PBR28 uptake and q-T2* correlated positively in many cortical areas, negatively in some regions. Patients with high cortical lesion inflammation had worse clinical outcome and higher intracortical lesion burden than patients with low inflammation. CONCLUSION: 11C-PBR28 and 7T imaging reveal distinct profiles of cortical inflammation in MS, which are related to disease burden.
Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Humanos , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Tomografía de Emisión de PositronesRESUMEN
Background Cortical lesions develop early in multiple sclerosis (MS) and play a major role in disease progression. MRI at 7.0 T shows high sensitivity for detection of cortical lesions as well as better spatial resolution and signal-to-noise ratio compared with lower field strengths. Purpose To longitudinally characterize (a) the development and evolution of cortical lesions in multiple sclerosis across the cortical width, sulci, and gyri; (b) their relation with white matter lesion accrual; and (c) the contribution of 7.0-T cortical and white matter lesion load and cortical thickness to neurologic disability. Materials and Methods Twenty participants with relapsing-remitting MS and 13 with secondary progressive MS, along with 10 age-matched healthy controls, were prospectively recruited from 2010 to 2016 to acquire, in two imaging sessions (mean interval, 1.5 years), 7.0-T MRI T2*-weighted gradient-echo images (0.33 × 0.33 × 1.0 mm3) for cortical and white matter lesion segmentation and 3.0-T T1-weighted images for cortical surface reconstruction and cortical thickness estimation. Cortical lesions were sampled through the cortex to quantify cortical lesion distribution. The Expanded Disability Status Scale (EDSS) was used to assess neurologic disability. Nonparametric statistics assessed differences between and within groups in MRI metrics of cortical and white matter lesion burden; regression analysis explored associations of disability with MRI metrics. Results Twenty-five of 31 (81%) participants developed new cortical lesions per year (intracortical, 1.3 ± 1.7 vs leukocortical, 0.7 ± 1.9; P = .04), surpassing white matter lesion accrual (cortical, 2.0 ± 2.8 vs white matter, 0.7 ± 0.6; P = .01). In contrast to white matter lesions, cortical lesion accrual was greater in participants with secondary progressive MS than with relapsing-remitting MS (3.6 lesions/year ± 4.2 vs 1.1 lesions/year ± 0.9, respectively; P = .03) and preferentially localized in sulci. Total cortical lesion volume independently predicted baseline EDSS (ß = 1.5, P < .001) and EDSS changes at follow-up (ß = 0.5, P = .003). Conclusion Cortical lesions predominantly develop intracortically and within sulci, suggesting an inflammatory cerebrospinal fluid-mediated lesion pathogenesis. Cortical lesion accumulation was prominent at 7.0 T and independently predicted neurologic disability progression. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Filippi and Rocca in this issue.
Asunto(s)
Corteza Cerebral , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple , Adulto , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Estudios Prospectivos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patologíaRESUMEN
The aim of this study was to investigate the interplay between structural connectivity and cortical demyelination in early multiple sclerosis. About 27 multiple sclerosis patients and 18 age-matched controls underwent two MRI scanning sessions. The first was done at 7T and involved acquiring quantitative T1 and T2 * high-resolution maps to estimate cortical myelination. The second was done on a Connectom scanner and consisted of acquiring high angular resolution diffusion-weighted images to compute white matter structural connectivity metrics: strength, clustering and local efficiency. To further investigate the interplay between structural connectivity and cortical demyelination, patients were divided into four groups according to disease-duration: 0-1 year, 1-2 years, 2-3 years, and >3 years. ANOVA and Spearman's correlations were used to highlight relations between metrics. ANOVA detected a significant effect between disease duration and both cortical myelin (p = 2 × 10-8 ) and connectivity metrics (p < 10-4 ). We observed significant cortical myelin loss in the shorter disease-duration cohorts (0-1 year, p = .0015), and an increase in connectivity in the longer disease-duration cohort (2-3 years, strength: p = .01, local efficiency: p = .002, clustering: p = .001). Moreover, significant covariations between myelin estimation and white matter connectivity metrics were observed: Spearman's Rho correlation coefficients of 0.52 (p = .0003), 0.55 (p = .0001), and 0.53 (p = .0001) for strength, local efficiency, and clustering, respectively. An association between cortical myelin loss and changes in white matter connectivity in early multiple sclerosis was detected. These changes in network organization might be the result of compensatory mechanisms in response to the ongoing cortical diffuse damage in the early stages of multiple sclerosis.
Asunto(s)
Corteza Cerebral/patología , Enfermedades Desmielinizantes/patología , Esclerosis Múltiple/patología , Red Nerviosa/patología , Adulto , Análisis de Varianza , Estudios de Casos y Controles , Corteza Cerebral/diagnóstico por imagen , Conectoma , Enfermedades Desmielinizantes/complicaciones , Enfermedades Desmielinizantes/diagnóstico por imagen , Evaluación de la Discapacidad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/fisiopatología , Red Nerviosa/diagnóstico por imagenRESUMEN
BACKGROUND: Thalamic degeneration impacts multiple sclerosis (MS) prognosis. OBJECTIVE: To investigate heterogeneous thalamic pathology, its correlation with white matter (WM), cortical lesions and thickness, and as function of distance from cerebrospinal fluid (CSF). METHODS: In 41 MS subjects and 17 controls, using 3 and 7 T imaging, we tested for (1) differences in thalamic volume and quantitative T2* (q-T2*) (2) globally and (3) within concentric bands originating from the CSF/thalamus interface; (4) the relation between thalamic, cortical, and WM metrics; and (5) the contribution of magnetic resonance imaging (MRI) metrics to clinical scores. We also assessed MS thalamic lesion distribution as a function of distance from CSF. RESULTS: Thalamic lesions were mainly located next to the ventricles. Thalamic volume was decreased in MS versus controls ( p < 10-2); global q-T2* was longer in secondary progressive multiple sclerosis (SPMS) only ( p < 10-2), indicating myelin and/or iron loss. Thalamic atrophy and longer q-T2* correlated with WM lesion volume ( p < 0.01). In relapsing-remitting MS, q-T2* thalamic abnormalities were located next to the WM ( p < 0.01 (uncorrected), p = 0.09 (corrected)), while they were homogeneously distributed in SPMS. Cortical MRI metrics were the strongest predictors of clinical outcome. CONCLUSION: Heterogeneous pathological processes affect the thalamus in MS. While focal lesions are likely mainly driven by CSF-mediated factors, overall thalamic degeneration develops in association with WM lesions.
Asunto(s)
Esclerosis Múltiple/patología , Degeneración Nerviosa/patología , Tálamo/patología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Degeneración Nerviosa/diagnóstico por imagen , Tálamo/diagnóstico por imagenRESUMEN
Neuroaxonal pathology is a main determinant of disease progression in multiple sclerosis; however, its underlying pathophysiological mechanisms, including its link to inflammatory demyelination and temporal occurrence in the disease course are still unknown. We used ultra-high field (7 T), ultra-high gradient strength diffusion and T1/T2-weighted myelin-sensitive magnetic resonance imaging to characterize microstructural changes in myelin and neuroaxonal integrity in the cortex and white matter in early stage multiple sclerosis, their distribution in lesional and normal-appearing tissue, and their correlations with neurological disability. Twenty-six early stage multiple sclerosis subjects (disease duration ≤5 years) and 24 age-matched healthy controls underwent 7 T T2*-weighted imaging for cortical lesion segmentation and 3 T T1/T2-weighted myelin-sensitive imaging and neurite orientation dispersion and density imaging for assessing microstructural myelin, axonal and dendrite integrity in lesional and normal-appearing tissue of the cortex and the white matter. Conventional mean diffusivity and fractional anisotropy metrics were also assessed for comparison. Cortical lesions were identified in 92% of early multiple sclerosis subjects and they were characterized by lower intracellular volume fraction (P = 0.015 by paired t-test), lower myelin-sensitive contrast (P = 0.030 by related-samples Wilcoxon signed-rank test) and higher mean diffusivity (P = 0.022 by related-samples Wilcoxon signed-rank test) relative to the contralateral normal-appearing cortex. Similar findings were observed in white matter lesions relative to normal-appearing white matter (all P < 0.001), accompanied by an increased orientation dispersion (P < 0.001 by paired t-test) and lower fractional anisotropy (P < 0.001 by related-samples Wilcoxon signed-rank test) suggestive of less coherent underlying fibre orientation. Additionally, the normal-appearing white matter in multiple sclerosis subjects had diffusely lower intracellular volume fractions than the white matter in controls (P = 0.029 by unpaired t-test). Cortical thickness did not differ significantly between multiple sclerosis subjects and controls. Higher orientation dispersion in the left primary motor-somatosensory cortex was associated with increased Expanded Disability Status Scale scores in surface-based general linear modelling (P < 0.05). Microstructural pathology was frequent in early multiple sclerosis, and present mainly focally in cortical lesions, whereas more diffusely in white matter. These results suggest early demyelination with loss of cells and/or cell volumes in cortical and white matter lesions, with additional axonal dispersion in white matter lesions. In the cortex, focal lesion changes might precede diffuse atrophy with cortical thinning. Findings in the normal-appearing white matter reveal early axonal pathology outside inflammatory demyelinating lesions.
Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Anisotropía , Axones , Encéfalo/diagnóstico por imagen , Estudios de Cohortes , Imagen de Difusión por Resonancia Magnética , Progresión de la Enfermedad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vaina de Mielina , Estudios ProspectivosRESUMEN
We present the case of an HIV-2-infected patient who developed progressive multifocal leukoencephalopathy (PML) in the setting of immune reconstitution inflammatory syndrome (IRIS) presenting as Bell's palsy. The brain MRI showed a single lesion in the facial colliculus considered initially to be ischemic in nature. This case report should alert clinicians that PML can occur in the setting of HIV-2 infection. It also illustrates the difficulty of establishing the diagnosis of PML.
Asunto(s)
Infecciones por VIH/complicaciones , VIH-2 , Leucoencefalopatía Multifocal Progresiva/complicaciones , Anciano , Parálisis de Bell/virología , Humanos , Síndrome Inflamatorio de Reconstitución Inmune/complicaciones , Síndrome Inflamatorio de Reconstitución Inmune/virología , Leucoencefalopatía Multifocal Progresiva/patología , Leucoencefalopatía Multifocal Progresiva/virología , MasculinoRESUMEN
OBJECTIVE: In multiple sclerosis (MS), using simultaneous magnetic resonance-positron emission tomography (MR-PET) imaging with 11 C-PBR28, we quantified expression of the 18kDa translocator protein (TSPO), a marker of activated microglia/macrophages, in cortex, cortical lesions, deep gray matter (GM), white matter (WM) lesions, and normal-appearing WM (NAWM) to investigate the in vivo pathological and clinical relevance of neuroinflammation. METHODS: Fifteen secondary-progressive MS (SPMS) patients, 12 relapsing-remitting MS (RRMS) patients, and 14 matched healthy controls underwent 11 C-PBR28 MR-PET. MS subjects underwent 7T T2*-weighted imaging for cortical lesion segmentation, and neurological and cognitive evaluation. 11 C-PBR28 binding was measured using normalized 60- to 90-minute standardized uptake values and volume of distribution ratios. RESULTS: Relative to controls, MS subjects exhibited abnormally high 11 C-PBR28 binding across the brain, the greatest increases being in cortex and cortical lesions, thalamus, hippocampus, and NAWM. MS WM lesions showed relatively modest TSPO increases. With the exception of cortical lesions, where TSPO expression was similar, 11 C-PBR28 uptake across the brain was greater in SPMS than in RRMS. In MS, increased 11 C-PBR28 binding in cortex, deep GM, and NAWM correlated with neurological disability and impaired cognitive performance; cortical thinning correlated with increased thalamic TSPO levels. INTERPRETATION: In MS, neuroinflammation is present in the cortex, cortical lesions, deep GM, and NAWM, is closely linked to poor clinical outcome, and is at least partly linked to neurodegeneration. Distinct inflammatory-mediated factors may underlie accumulation of cortical and WM lesions. Quantification of TSPO levels in MS could prove to be a sensitive tool for evaluating in vivo the inflammatory component of GM pathology, particularly in cortical lesions. Ann Neurol 2016;80:776-790.
Asunto(s)
Sustancia Gris/diagnóstico por imagen , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Pirimidinas , Receptores de GABA/metabolismo , Sustancia Blanca/diagnóstico por imagen , Adulto , Femenino , Sustancia Gris/metabolismo , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Imagen Multimodal , Esclerosis Múltiple Crónica Progresiva/metabolismo , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Sustancia Blanca/metabolismoRESUMEN
PURPOSE: To investigate in vivo the spatial specificity of the interdependence between intracortical and white matter (WM) pathologic changes as function of cortical depth and distance from the cortex in multiple sclerosis (MS), and their independent contribution to physical and cognitive disability. MATERIALS AND METHODS: This study was institutional review board-approved and participants gave written informed consent. In 34 MS patients and 17 age-matched control participants, 7-T quantitative T2* maps, 3-T T1-weighted anatomic images for cortical surface reconstruction, and 3-T diffusion tensor images (DTI) were obtained. Cortical quantitative T2* maps were sampled at 25%, 50%, 75% depth from pial surface. Tracts of interest were reconstructed by using probabilistic tractography. The relationship between DTI metrics voxelwise of the tracts and cortical integrity in the projection cortex was tested by using multilinear regression models. RESULTS: In MS, DTI abnormal findings along tracts correlated with quantitative T2* changes (suggestive of iron and myelin loss) at each depth of the cortical projection area (P < .01, corrected). This association, however, was not spatially specific because abnormal findings in WM tracts also related to cortical pathologic changes outside of the projection cortex of the tract (P < .001). Expanded Disability Status Scale pyramidal score was predicted by axial diffusivity along the corticospinal tract (ß = 4.6 × 10(3); P < .001), Symbol Digit Modalities Test score by radial diffusivity along the cingulum (ß = -4.3 × 10(4); P < .01), and T2* in the cingulum cortical projection at 25% depth (ß = -1.7; P < .05). CONCLUSION: Intracortical and WM injury are concomitant pathologic processes in MS, which are not uniquely distributed according to a tract-cortex-specific pattern; their association may reflect a common stage-dependent mechanism.
Asunto(s)
Corteza Cerebral/patología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Fibras Nerviosas Mielínicas/patología , Adulto , Evaluación de la Discapacidad , Femenino , Humanos , Imagenología Tridimensional , Masculino , Estudios ProspectivosRESUMEN
OBJECTIVE: To determine the prevalence of JC virus (JCV) reactivation and JCV-specific cellular immune response during prolonged natalizumab treatment for multiple sclerosis (MS). METHODS: We enrolled 43 JCV-seropositive MS patients, including 32 on natalizumab monotherapy >18 months, 6 on interferon ß-1a monotherapy >36 months, and 5 untreated controls. We performed quantitative real-time polymerase chain reaction in cerebrospinal fluid (CSF), blood, and urine for JCV DNA, and we determined JCV-specific T-cell responses using enzyme-linked immunosorbent spot (ELISpot) and intracellular cytokine staining (ICS) assays, ex vivo and after in vitro stimulation with JCV peptides. RESULTS: JCV DNA was detected in the CSF of 2 of 27 (7.4%) natalizumab-treated MS patients who had no symptoms or magnetic resonance imaging-detected lesions consistent with progressive multifocal leukoencephalopathy. JCV DNA was detected in blood of 12 of 43 (27.9%) and in urine of 11 of 43 (25.6%) subjects without a difference between natalizumab-treated patients and controls. JC viral load was higher in CD34(+) cells and in monocytes compared to other subpopulations. ICS was more sensitive than ELISpot. JCV-specific T-cell responses, mediated by both CD4(+) and CD8(+) T lymphocytes, were detected more frequently after in vitro stimulation. JCV-specific CD4(+) T cells were detected ex vivo more frequently in MS patients with JCV DNA in CD34(+) (p = 0.05) and B cells (p = 0.03). INTERPRETATION: Asymptomatic JCV reactivation may occur in CSF of natalizumab-treated MS patients. JCV DNA load is higher in circulating CD34(+) cells and monocytes compared to other mononuclear cells, and JCV in blood might trigger a JCV-specific CD4(+) T-cell response. JCV-specific cellular immune response is highly prevalent in all JCV-seropositive MS patients, regardless of treatment.
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Factores Inmunológicos/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Adulto , Anciano , ADN Viral/sangre , ADN Viral/líquido cefalorraquídeo , ADN Viral/orina , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Humanos , Interferón beta-1a , Interferón beta/uso terapéutico , Interferón gamma/metabolismo , Virus JC/genética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/virología , Natalizumab , Infecciones por Polyomavirus/complicaciones , Infecciones por Polyomavirus/epidemiología , Estudios Retrospectivos , Estadística como Asunto , Linfocitos T/metabolismo , Factores de TiempoRESUMEN
We have previously shown that myelin abnormalities characterize the normal aging process of the brain and that an age-associated reduction in Klotho is conserved across species. Predominantly generated in brain and kidney, Klotho overexpression extends life span, whereas loss of Klotho accelerates the development of aging-like phenotypes. Although the function of Klotho in brain is unknown, loss of Klotho expression leads to cognitive deficits. We found significant effects of Klotho on oligodendrocyte functions, including induced maturation of rat primary oligodendrocytic progenitor cells (OPCs) in vitro and myelination. Phosphoprotein analysis indicated that Klotho's downstream effects involve Akt and ERK signal pathways. Klotho increased OPC maturation, and inhibition of Akt or ERK function blocked this effect on OPCs. In vivo studies of Klotho knock-out mice and control littermates revealed that knock-out mice have a significant reduction in major myelin protein and gene expression. By immunohistochemistry, the number of total and mature oligodendrocytes was significantly lower in Klotho knock-out mice. Strikingly, at the ultrastructural level, Klotho knock-out mice exhibited significantly impaired myelination of the optic nerve and corpus callosum. These mice also displayed severe abnormalities at the nodes of Ranvier. To decipher the mechanisms by which Klotho affects oligodendrocytes, we used luciferase pathway reporters to identify the transcription factors involved. Together, these studies provide novel evidence for Klotho as a key player in myelin biology, which may thus be a useful therapeutic target in efforts to protect brain myelin against age-dependent changes and promote repair in multiple sclerosis.
Asunto(s)
Encéfalo/metabolismo , Glucuronidasa/metabolismo , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Oligodendroglía/metabolismo , Animales , Recuento de Células , Supervivencia Celular/fisiología , Células Cultivadas , Cuerpo Calloso/metabolismo , Femenino , Glucuronidasa/genética , Proteínas Klotho , Ratones , Ratones Noqueados , Proteína Básica de Mielina/metabolismo , Células-Madre Neurales/metabolismo , Nervio Óptico/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT1/fisiologíaRESUMEN
BACKGROUND: Obstructive sleep apnea (OSA) is more common in patients with multiple sclerosis (MS) than in the general population, which suggests MS may predispose patients to OSA. However, the relationships between MS treatment, disease activity, disease severity, fatigue, and OSA are unknown. OBJECTIVES: To evaluate the connections between OSA risk, MS fatigue, and MS severity, controlling for well-established risk factors for OSA in the general population. METHODS: We administered OSA and fatigue-related questionnaires to patients with MS and collected relevant demographic and clinical data. Then, we utilized multivariate logistic regression to examine relationships between OSA risk and MS disease severity. RESULTS: We identified an inverse correlation between medication possession ratio (MPR) and high OSA risk. Statistical models also demonstrated a positive correlation between fatigue and nonwhite race with high OSA risk, controlling for male sex, younger age, and body mass index (BMI). CONCLUSION: We identified disease-modifying therapy (DMT) underutilization, fatigue, and nonwhite race as predictors of high OSA risk in patients with MS. These findings support aggressive treatment of MS to avoid risk of comorbid OSA and MS-induced fatigue.
Asunto(s)
Esclerosis Múltiple , Apnea Obstructiva del Sueño , Humanos , Apnea Obstructiva del Sueño/epidemiología , Masculino , Femenino , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/complicaciones , Persona de Mediana Edad , Adulto , Fatiga/epidemiología , Fatiga/etiología , Factores de Riesgo , Índice de Severidad de la Enfermedad , ComorbilidadRESUMEN
BACKGROUND: Diroximel fumarate (DRF) and dimethyl fumarate (DMF) are similar disease-modifying therapies (DMTs) that reduce disease activity in patients with relapsing-remitting multiple sclerosis (MS). We expect that patients on DRF would experience a similar incidence and severity of lymphopenia, given that it is a well-documented side effect of DMF treatment. METHODS: We utilized linear mixed-effects models to test for differences in white blood cell count (WBC), absolute lymphocyte count (ALC), absolute CD3+ count, absolute CD4+ count, and absolute CD8+ count over time in clinically stable patients with MS on DMF who switched to DRF. RESULTS: Twenty-two patients with MS who were clinically stable on DMF switched to DRF. Linear mixed-effects models showed a decrease in ALC when switching medications (ß = -225.70, p < 0.040). In addition, the models showed a decrease in absolute CD8+ counts after switches from DMF to DRF (ß = -85.59, p = 0.034). CONCLUSION: Patients with MS who are stable on DMF and switch to DRF may experience worsening of lymphopenia and lower absolute CD8+ counts, which may increase their risk of opportunistic infections. These findings indicate that close lymphocyte subset monitoring is clinically important when switching patients with MS from DMF to DRF.