RESUMEN
The transporter associated with antigen processing (TAP) is a key player in the major histocompatibility class I-restricted antigen presentation and an attractive target for immune evasion by viruses. Bovine herpesvirus 1 impairs TAP-dependent antigenic peptide transport through a two-pronged mechanism in which binding of the UL49.5 gene product to TAP both inhibits peptide transport and triggers its proteasomal degradation. How UL49.5 promotes TAP degradation has, so far, remained unknown. Here, we use high-content siRNA and genome-wide CRISPR-Cas9 screening to identify CLR2KLHDC3 as the E3 ligase responsible for UL49.5-triggered TAP disposal. We propose that the C terminus of UL49.5 mimics a C-end rule degron that recruits the E3 to TAP and engages the cullin-RING E3 ligase in endoplasmic reticulum-associated degradation.
Asunto(s)
Transportadoras de Casetes de Unión a ATP , Degrones , Herpesviridae , Presentación de Antígeno , Citomegalovirus , Degradación Asociada con el Retículo Endoplásmico , Proteínas de Transporte de Membrana , Péptidos , Ubiquitina-Proteína Ligasas/genética , Herpesviridae/fisiologíaRESUMEN
Bovine herpesvirus type 1 (BoHV-1) is a pathogen of cattle responsible for infectious bovine rhinotracheitis. The BoHV-1 UL49.5 is a transmembrane protein that binds to the transporter associated with antigen processing (TAP) and downregulates cell surface expression of the antigenic peptide complexes with the major histocompatibility complex class I (MHC-I). KLHDC3 is a kelch domain-containing protein 3 and a substrate receptor of a cullin2-RING (CRL2) E3 ubiquitin ligase. Recently, it has been identified that CRL2KLHDC3 is responsible for UL49.5-triggered TAP degradation via a C-degron pathway and the presence of the degron sequence does not lead to the degradation of UL49.5 itself. The molecular modeling of KLHDC3 in complexes with four UL49.5 C-terminal decapeptides (one native protein and three mutants) revealed their activity to be closely correlated with the conformation which they adopt in KLHDC3 binding cleft. To analyze the interaction between UL49.5 and KLHDC3 in detail, in this work a total of 3.6 µs long molecular dynamics simulations have been performed. The complete UL49.5-KLHDC3 complexes were embedded into the fully hydrated all-atom lipid membrane model with explicit water molecules. The network of polar interactions has been proposed to be responsible for the recognition and binding of the degron in KLHDC3. The interaction network within the binding pocket appeared to be very similar between two CRL2 substrate receptors: KLHDC3 and KLHDC2.
Asunto(s)
Herpesvirus Bovino 1 , Proteínas del Envoltorio Viral , Animales , Bovinos , Proteínas del Envoltorio Viral/química , Ligasas/metabolismo , Ubiquitina/metabolismo , Degrones , Herpesvirus Bovino 1/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ubiquitina-Proteína LigasasRESUMEN
The human V1b receptor (V1bR) is primarily expressed in the corticotropic cells of the anterior pituitary where it is involved in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis. The activation of V1bR induces the secretion of adrenocorticotropin hormone (ACTH) from the anterior pituitary cells which, in turn, stimulates the production of cortisol via the adrenal cortex. Clinical studies have demonstrated the chronic dysfunction of the HPA axis in patients with several psychiatric disorders. Thus, the inhibition of the V1b receptor and normalizing the HPA axis hyperactivity is a promising approach to the treatment of many stress-related disorders such as anxiety and depression. Nelivaptan is a selective V1bR antagonist that can be used for this purpose and an excellent molecule to study how antagonists interact with V1bR, especially since in recent years the experimental structures of vasopressin V2 and oxytocin receptors were solved, providing high-similarity templates for homology modeling of V1bR. Therefore, in this work, six independent molecular dynamics simulations of a V1bR-nelivaptan complex in a fully hydrated lipid bilayer, yielding a total simulation time of 6.0 µs, have been conducted. In the lowest-energy complexes obtained in this work and proposed to be the most probable structure of the V1bR-nelivaptan complex, the location of the ligand inside the receptor pocket is very similar to that of the other ligands observed in the experimental structures of the vasopressin/oxytocin receptor family. The receptor-ligand interaction has been analyzed and described, revealing the details of the molecular mechanism of this antagonist binding to V1bR and a probable contribution of L2005×40 and T2035×43 to binding selectivity.
RESUMEN
The C-terminal residues of proteins can function as degrons recognized by ubiquitin ligases for proteasomal degradation. Kelch domain-containing protein 3 (KLHDC3) is a substrate receptor for E3 ubiquitin ligase (Cullin2-RING ligase) that targets the C-terminal degrons. UL49.5 is 96 amino-acid type 1 transmembrane protein from bovine herpesvirus 1. Herpesviruses have evolved highly effective strategies to evade the antiviral immune response. One of these strategies is inhibition of the antigen processing and presentation pathway by MHC I, thereby reducing the presentation of the antigenic peptides on the surface of the infected cell. Recently, it has been demonstrated that UL49.5 triggers TAP degradation via recruiting the E3 ubiquitin ligase to TAP. Moreover, the mutagenesis revealed that the mutations within the UL49.5 C-degron sequence (93RGRG96) affect binding of UL49.5 to KLHDC3. In this work the molecular dynamics of KLHDC3 in complexes with the C-terminal decapeptide of the herpesviral protein UL4.95 and its three mutants has been employed to provide a framework for understanding molecular recognition of UL49.5 by KLHDC3. The findings of this study give insights into the interactions of the various degrons with KLHDC3. During the molecular dynamics, an active RGKG mutant adopts a conformation similar to that of the wild type decapeptide, whereas the conformations of two inactive mutants, KGRG and RGRD are significantly different. Both R93K and G96D mutations impair the interactions of the C-terminal glycine with KLHDC3. The findings of this study expand the existing knowledge about the mechanism of protein recognition by Cullin2-RING ligases thus contributing to the design of antiviral and anticancer drugs that can selectively promote or inhibit degradation of the proteins of interest.
Asunto(s)
Simulación de Dinámica Molecular , Mutación , Herpesvirus Bovino 1/metabolismo , Herpesvirus Bovino 1/genética , Proteínas Virales/metabolismo , Proteínas Virales/química , Humanos , Degrones , Proteínas del Envoltorio ViralRESUMEN
Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a result, a reduced number of MHC class I molecules appear on the surface of infected cells and, thus, the immune system is not efficiently activated. BoHV-1-encoded UL49.5 protein is one such TAP transporter inhibitor. This protein binds to TAP in such a way that its N-terminal fragment interacts with the loops of the TAP complex, and the C-terminus stimulates proteasomal degradation of TAP. Previous studies have indicated certain amino acid residues, especially the RRE(9-11) motif, within the helical structure of the UL49.5 N-terminal fragment, as being crucial to the protein's activity. In this work, we investigated the effects of modifications within the RRE region on the spatial structure of the UL49.5 N-terminal fragment. The introduced RRE(9-11) variations were designed to abolish or stabilize the structure of the α-helix and, consequently, to increase or decrease protein activity compared to the wild type. The terminal structure of the peptides was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane-mimetic or membrane-model environments. Our structural results show that in the RRE(9-11)AAA and E11G peptides the helical structure has been stabilized, whereas for the RRE(9-11)GGG peptide, as expected, the helix structure has partially unfolded compared to the native structure. These RRE modifications, in the context of the entire UL49.5 proteins, slightly altered their biological activity in human cells.
Asunto(s)
Infecciones por Herpesviridae/virología , Herpesvirus Bovino 1/química , Rinotraqueítis Infecciosa Bovina/virología , Proteínas del Envoltorio Viral/química , Secuencias de Aminoácidos , Animales , Bovinos , Humanos , Modelos Moleculares , Fragmentos de Péptidos/química , Conformación Proteica , Estabilidad ProteicaRESUMEN
Ischemic stroke is a disturbance in cerebral blood flow caused by brain tissue ischemia and hypoxia. We optimized a multifactorial in vitro model of acute ischemic stroke using rat primary neural cultures. This model was exploited to investigate the pro-viable activity of cell-penetrating peptides: arginine-rich Tat(49-57)-NH2 (R49KKRRQRRR57-amide) and its less basic analogue, PTD4 (Y47ARAAARQARA57-amide). Our model included glucose deprivation, oxidative stress, lactic acidosis, and excitotoxicity. Neurotoxicity of these peptides was excluded below a concentration of 50 µm, and PTD4-induced pro-survival was more pronounced. Circular dichroism spectroscopy and molecular dynamics (MD) calculations proved potential contribution of the peptide conformational properties to neuroprotection: in MD, Tat(49-57)-NH2 adopted a random coil and polyproline type II helical structure, whereas PTD4 adopted a helical structure. In an aqueous environment, the peptides mostly adopted a random coil conformation (PTD4) or a polyproline type II helical (Tat(49-57)-NH2) structure. In 30% TFE, PTD4 showed a tendency to adopt a helical structure. Overall, the pro-viable activity of PTD4 was not correlated with the arginine content but rather with the peptide's ability to adopt a helical structure in the membrane-mimicking environment, which enhances its cell membrane permeability. PTD4 may act as a leader sequence in novel drugs for the treatment of acute ischemic stroke.
Asunto(s)
Isquemia Encefálica/prevención & control , Péptidos de Penetración Celular/farmacología , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico/prevención & control , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Permeabilidad de la Membrana Celular , Femenino , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/patología , Ratas , Ratas WistarRESUMEN
Vasopressin and oxytocin receptors belong to the superfamily of G protein-coupled receptors and play an important role in many physiological functions. They are also involved in a number of pathological conditions being important drug targets. In this work, four vasopressin analogues substituted at position 2 with 3,3'-diphenylalanine have been docked into partially flexible vasopressin and oxytocin receptors. The bulky residue at position 2 acts as a structural restraint much stronger in the oxytocin receptor (OTR) than in the vasopressin V2 receptor (V2R), resulting in a different location of the analogues in these receptors. This explains the different, either agonistic or antagonistic, activities of the analogues in V2R and OTR, respectively. In all complexes, the conserved polar residues serve as anchor points for the ligand both in OTR and V2R. Strong interactions of the C-terminus of analogue II ([Mpa(1) ,d-Dpa(2) ,Val(4) ,d-Arg(8) ]VP) with extracellular loop 3 may be responsible for its highest activity at V2R. It also appears that V2R adapts more readily to the docking analogues by conformational changes in the aromatic side chains triggering receptor activation. A weak activity at V1a vasopressin receptor appears to be caused by weak receptor-ligand interactions. Results of this study may facilitate a rational design of new analogues with the highest activity/selectivity at vasopressin and OTRs.
Asunto(s)
Simulación del Acoplamiento Molecular , Fenilalanina/análogos & derivados , Receptores de Oxitocina/química , Vasopresinas/química , Humanos , Fenilalanina/química , Receptores de Vasopresinas/químicaRESUMEN
The transporter associated with antigen processing (TAP) is a key player in the MHC class I-restricted antigen presentation and an attractive target for immune evasion by viruses. Bovine herpesvirus 1 (BoHV-1) impairs TAP-dependent antigenic peptide transport through a two-pronged mechanism in which binding of the UL49.5 gene product to TAP both inhibits peptide transport and promotes its proteasomal degradation. How UL49.5 promotes TAP degradation is unknown. Here, we use high-content siRNA and genome-wide CRISPR-Cas9 screening to identify CLR2KLHDC3 as the E3 ligase responsible for UL49.5-triggered TAP disposal in human cells. We propose that the C-terminus of UL49.5 mimics a C-end rule degron that recruits the E3 to TAP and engages the CRL2 E3 in ER-associated degradation.
RESUMEN
Due to unique features, proline residues may control protein structure and function. Here, we investigated the role of 52PPQ54 residues, indicated by the recently established experimental 3D structure of bovine herpesvirus 1-encoded UL49.5 protein as forming a characteristic proline hinge motif in its N-terminal domain. UL49.5 acts as a potent inhibitor of the transporter associated with antigen processing (TAP), which alters the antiviral immune response. Mechanisms employed by UL49.5 to affect TAP remain undetermined on a molecular level. We found that mutations in the 52PPQ54 region had a vast impact on its immunomodulatory function, increasing cell surface MHC class I expression, TAP levels, and peptide transport efficiency. This inhibitory effect was specific for UL49.5 activity towards TAP but not towards the viral glycoprotein M. To get an insight into the impact of proline hinge modifications on structure and dynamics, we performed all-atom and coarse-grained molecular dynamics studies on the native protein and PPQ mutants. The results demonstrated that the proline hinge sequence with its highly rigid conformation served as an anchor into the membrane. This anchor was responsible for the structural and dynamical behavior of the whole protein, constraining the mobility of the C-terminus, increasing the mobility of the transmembrane region, and controlling the accessibility of the C-terminal residues to the cytoplasmic environment. Those features appear crucial for TAP binding and inhibition. Our findings significantly advance the structural understanding of the UL49.5 protein and its functional regions and support the importance of proline motifs for the protein structure.
Asunto(s)
Presentación de Antígeno , Herpesvirus Bovino 1 , Prolina , Herpesvirus Bovino 1/inmunología , Proteínas de Transporte de Membrana/metabolismo , Prolina/química , Prolina/genética , Secuencias de Aminoácidos , Transporte de ProteínasRESUMEN
Opioid receptors (delta, kappa, and mu) belong to the G protein-coupled receptor (GPCR) superfamily. They are responsible for pain perception - being activated by opioid peptides such as enkephalins, endorphins and dynorphins and by opiates, such as morphine. Enkephalins are naturally occurring endogenous pentapeptides with the amino acid sequence Tyr-Gly-Gly-Phe-Leu/Met. Both enkephalins are potent agonists of the delta receptor, and to a lesser extent the mu receptor, with little to no effect on the kappa receptor. Like most small peptides, enkephalins are easily catabolised via enzymatic degradation and show poor blood-brain barrier penetration. The attachment of sugars to peptides increases their penetration of the blood-brain barrier but also may affect interactions with receptors. In this study, the [Leu5]enkephalin and [Leu5]enkephalin containing the ß-D-glucuronic acid were investigated to explain how the presence of sugar moiety in the peptide molecule influences its interaction with the opioid receptors. In conclusion, the conjugation of an enkephalin molecule with the glucuronic acid has a direct and strong impact on the receptor-ligand interactions. The enhancement of ligand binding is much stronger in the delta receptor than in the mu receptor; thus, enkephalin conjugated with glucuronic acid shows greater selectivity toward the delta opioid receptor than the original peptide.
Asunto(s)
Receptores Opioides mu , Receptores Opioides , Receptores Opioides/metabolismo , Receptores Opioides delta , Ligandos , Encefalinas/metabolismo , Ácido Glucurónico , AzúcaresRESUMEN
In this study, ten tetra- and heptapeptide analogues of deltorphin containing the urea bridges between residues 2 and 4 have been docked into the δ- and µ-opioid receptors to explain their different biological activities. The important factors explaining particular ligand activity such as free energy of binding, conformation of the ligand, its location inside the binding pocket as well as the number and strength of the receptor-ligand interactions have been discussed. Several different binding modes for investigated ligands have been proposed. It appears that the binding site is not identical even for very similar ligands. Results of this study help to explain the differences in biological activity of the deltorphin analogues, their interaction with the opioid receptors at the molecular level and support designing a new generation of potent opioid drugs with improved selectivity.
Asunto(s)
Modelos Moleculares , Oligopéptidos/química , Oligopéptidos/metabolismo , Receptores Opioides/química , Receptores Opioides/metabolismo , Ligandos , Estructura Molecular , Estereoisomerismo , Urea/químicaRESUMEN
The UNited RESidue (UNRES) force field was tested in the 14th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP14), in which larger oligomeric and multimeric targets were present compared to previous editions. Three prediction modes were tested (i) ab initio (the UNRES group), (ii) contact-assisted (the UNRES-contact group), and (iii) template-assisted (the UNRES-template group). For most of the targets, the contact restraints were derived from the server models top-ranked by the DeepQA method, while the DNCON2 method was used for 11 targets. Our consensus-fragment procedure was used to run template-assisted predictions. Each group also processed the Nuclear Magnetic Resonance (NMR)- and Small Angle X-Ray Scattering (SAXS)-data assisted targets. The average Global Distance Test Total Score (GDT_TS) of the 'Model 1' predictions were 29.17, 39.32, and 56.37 for the UNRES, UNRES-contact, and UNRES-template predictions, respectively, increasing by 0.53, 2.24, and 3.76, respectively, compared to CASP13. It was also found that the GDT_TS of the UNRES models obtained in ab initio mode and in the contact-assisted mode decreases with the square root of chain length, while the exponent in this relationship is 0.20 for the UNRES-template group models and 0.11 for the best performing AlphaFold2 models, which suggests that incorporation of database information, which stems from protein evolution, brings in long-range correlations, thus enabling the correction of force-field inaccuracies.
Asunto(s)
Proteínas , Bases de Datos Factuales , Conformación Proteica , Dispersión del Ángulo Pequeño , Difracción de Rayos XRESUMEN
The role of the internal water molecules in vasopressin and oxytocin receptors has been investigated via molecular dynamics simulations in hydrated membrane model. Several water molecules have been identified within the binding pockets of receptors, where they interact with the conserved residues. In all unliganded receptors, the water molecules bound to the highly conserved D2.50 cluster have been observed. It has been proposed which water molecules may significantly contribute to the stability of overall receptor structure. In receptor-ligand complexes the water molecules are involved in the receptor-ligand interactions by forming water-mediated hydrogen bonds at their contact surface.
Asunto(s)
Receptores de Oxitocina/química , Receptores de Vasopresinas/química , Agua/química , Sitios de Unión , Biología Computacional , Simulación por Computador , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Oxitocina/química , Vasopresinas/químicaRESUMEN
The transporter associated with antigen processing (TAP) directly participates in the immune response as a key component of the cytosolic peptide to major histocompatibility complex (MHC) class I protein loading machinery. This makes TAP an important target for viruses avoiding recognition by CD8+ T lymphocytes. Its activity can be suppressed by the UL49.5 protein produced by bovine herpesvirus 1, although the mechanism of this inhibition has not been understood so far. Therefore, the main goal of our study was to investigate the 3D structure of bovine herpesvirus 1 - encoded UL49.5 protein. The final structure of the inhibitor was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane mimetic environments. In NMR studies, UL49.5 was represented by two fragments: the extracellular region (residues 1-35) and the transmembrane-intracellular fragment (residues 36-75), displaying various functions during viral invasion. After the empirical structure determination, a molecular docking procedure was used to predict the complex of UL49.5 with the TAP heterodimer. Our results revealed that UL49.5 adopted a highly flexible membrane-proximal helical structure in the extracellular part. In the transmembrane region, we observed two short α-helices. Furthermore, the cytoplasmic part had an unordered structure. Finally, we propose three different orientations of UL49.5 in the complex with TAP. Our studies provide, for the first time, the experimental structural information on UL49.5 and structure-based insight in its mechanism of action which might be helpful in designing new drugs against viral infections.
Asunto(s)
Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Proteínas del Envoltorio Viral/análisis , Proteínas Virales/análisis , Animales , Bovinos , Conformación Proteica , Proteínas del Envoltorio Viral/síntesis química , Proteínas del Envoltorio Viral/aislamiento & purificación , Proteínas Virales/síntesis química , Proteínas Virales/aislamiento & purificaciónRESUMEN
In this study, four cyclic vasopressin (CYFQNCPRG-NH(2), AVP) analogues substituted at positions 2 and 3 with four combinations of enantiomers of N-methylphenylalanine have been investigated. Three-dimensional structures of analogues have been formerly determined using NMR spectroscopy in dimethyl sulfoxide. Three-dimensional models of the vasopressin and oxytocin receptors were constructed by combining the multiple sequence alignment and the RD crystal structure as a template. The analogues have been docked into the receptor using the AutoDock program. The relaxation of the receptor-ligand complexes using energy minimization, followed by the constrained simulated annealing protocols (CSA), has been performed. The receptor-bound conformations of the investigated analogues have been proposed. We concluded that the N-methylated residues at positions 2 and 3 act as a structural restraint, determining the conformation of analogues, their location inside the receptor cavity, and mutual arrangement of the aromatic side chains. The conserved polar residues constitute the handles keeping the biologically active analogues inside the binding cavity. The Arg(8)-D(2.65) salt bridge might be responsible for analogue-selective binding in OTR and V1aR versus V2R, where the positively charged K(2.65) 100 is present at the equivalent position.
Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas , Simulación por Computador , Modelos Químicos , Fenilalanina/análogos & derivados , Receptores de Oxitocina/antagonistas & inhibidores , Vasopresinas/química , Vasopresinas/farmacología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión/efectos de los fármacos , Bovinos , Humanos , Imagenología Tridimensional , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Fenilalanina/química , Conformación Proteica , Estructura Terciaria de Proteína , Receptores de Oxitocina/química , Receptores de Vasopresinas/química , Alineación de Secuencia , Estereoisomerismo , Relación Estructura-ActividadRESUMEN
INTRODUCTION: The vasopressin V1a and V1b receptors are involved in many crucial physiological, reproductive, behavioral and social functions. Consequently, they are also involved in several pathological conditions, thus the ligands capable of selective stimulation/inhibition of these receptors may present therapeutic benefit in a variety of diseases. AREAS COVERED: In this review, the author focuses on the vasopressin V1a and V1b receptors, their biological functions and agonists and antagonists patented in the years 2012 - 2014. This paper is divided according to both the target receptor and the applicant and describes the compounds from the patents along with their biological activity. EXPERT OPINION: In the recent years, pharmaceutical companies have discovered and patented new compounds which act through vasopressin V1a and/or V1b receptors, both peptide and non-peptide. Among the V1bR antagonists published in the last years, the oxindole derivatives appear to be the most promising drug candidates.
Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Diseño de Fármacos , Receptores de Vasopresinas/efectos de los fármacos , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas/química , Arginina Vasopresina/metabolismo , Humanos , Indoles/química , Indoles/farmacología , Ligandos , Oxindoles , Patentes como Asunto , Péptidos/química , Péptidos/farmacología , Receptores de Vasopresinas/metabolismoRESUMEN
The neurohypophyseal nonapeptide hormone oxytocin (OT) is the strongest uterotonic substance known and is responsible for the initiation of labor. Conversely, oxytocin antagonists blocking uterine OT receptor can suppress uterus contraction. In this paper we describe a computer simulated docking pertinent to affinity of an oxytocin antagonist atosiban towards OT receptor, versus vasopressin V1a and V2 receptors.
Asunto(s)
Antagonistas de Hormonas/metabolismo , Modelos Moleculares , Receptores de Oxitocina/metabolismo , Receptores de Vasopresinas/metabolismo , Vasotocina/análogos & derivados , Vasotocina/metabolismo , Aminoácidos/química , Sitios de Unión , Simulación por Computador , Humanos , Conformación ProteicaRESUMEN
Vaptans are compounds that act as non-peptide vasopressin receptor antagonists. These compounds have diverse chemical structures. In this study, we used a combined approach of protein folding, molecular dynamics simulations, docking, and quantitative structure-activity relationship (QSAR) to elucidate the detailed interaction of the vasopressin receptor V1a (V1aR) with some of its blockers (134). QSAR studies were performed using MLR analysis and were gathered into one group to perform an artificial neural network (ANN) analysis. For each molecule, 1481 molecular descriptors were calculated. Additionally, 15 quantum chemical descriptors were calculated. The final equation was developed by choosing the optimal combination of descriptors after removing the outliers. Molecular modeling enabled us to obtain a reliable tridimensional model of V1aR. The docking results indicated that the great majority of ligands reach the binding site under π-π, π-cation, and hydrophobic interactions. The QSAR studies demonstrated that the heteroatoms N and O are important for ligand recognition, which could explain the structural diversity of ligands that reach V1aR.
Asunto(s)
Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Receptores de Vasopresinas/metabolismo , Antagonistas de los Receptores de Hormonas Antidiuréticas , Benzodiazepinas/química , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Redes Neurales de la Computación , Estructura Terciaria de ProteínaRESUMEN
BACKGROUND: Oxytocin (OT), synthesized in the heart, has the ability to heal injured hearts and to promote cardiomyogenesis from stem cells. Recently, we reported that the OT-GKR molecule, a processing intermediate of OT, potently increased the spontaneous formation of cardiomyocytes (CM) in embryonic stem D3 cells and augmented glucose uptake in newborn rat CM above the level stimulated by OT. In the present experiments, we investigated whether OT-GKR exists in fetal and newborn rodent hearts, interacts with the OT receptors (OTR) and primes the generation of contracting cells expressing CM markers in P19 cells, a model for the study of early heart differentiation. METHODOLOGY/PRINCIPAL FINDINGS: High performance liquid chromatography of newborn rat heart extracts indicated that OT-GKR was a dominant form of OT. Immunocytochemistry of mouse embryos (embryonic day 15) showed cardiac OT-GKR accumulation and OTR expression. Computerized molecular modeling revealed OT-GKR docking to active OTR sites and to V1a receptor of vasopressin. In embryonic P19 cells, OT-GKR induced contracting cell colonies and ventricular CM markers more potently than OT, an effect being suppressed by OT antagonists and OTR-specific small interfering (si) RNA. The V1a receptor antagonist and specific si-RNA also significantly reduced OT-GKR-stimulated P19 contracting cells. In comparison to OT, OT-GKR induced in P19 cells less α-actinin, myogenin and MyoD mRNA, skeletal muscle markers. CONCLUSIONS/SIGNIFICANCE: These results raise the possibility that C-terminally extended OT molecules stimulate CM differentiation and contribute to heart growth during fetal life.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Oxitocina/análogos & derivados , Animales , Línea Celular , Cromatografía Líquida de Alta Presión , Células Madre Embrionarias/citología , Inmunohistoquímica , Ratones , Modelos Moleculares , Oxitocina/química , Oxitocina/farmacología , ARN Interferente Pequeño , RatasRESUMEN
The Escherichia coli heat shock protein ClpB, a member of the Hsp100 family, plays a crucial role in cellular thermotolerance. In co-operation with the Hsp70 chaperone system, it is able to solubilize proteins aggregated by heat shock conditions and refold them into the native state in an ATP-dependent way. It was established that the mechanism of ClpB action depends on the formation of a ring-shaped hexameric structure and the translocation of a protein substrate through an axial channel. The structural aspects of this process are not fully known. By means of homology modeling and protein-protein docking, we obtained a model of the hexameric arrangement of the full-length ClpB protein complexed with ATP. A molecular dynamics simulation of this model was performed to assess its flexibility and conformational stability. The high mobility of the "linker" M-domain, essential for the renaturing activity of ClpB, was demonstrated, and the size and shape of central channel were analyzed. In this model, we propose the coordinates for a loop between b4 and B6 structural elements, not defined in previous structural research, which faces the inside of the channel and may therefore play a role in substrate translocation.