Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Appl Phys B ; 128(4): 72, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308124

RESUMEN

Laser-induced incandescence (LII) is a widely used combustion diagnostic for in situ measurements of soot primary particle sizes and volume fractions in flames, exhaust gases, and the atmosphere. Increasingly, however, it is applied to characterize engineered nanomaterials, driven by the increasing industrial relevance of these materials and the fundamental scientific insights that may be obtained from these measurements. This review describes the state of the art as well as open research challenges and new opportunities that arise from LII measurements on non-soot nanoparticles. An overview of the basic LII model, along with statistical techniques for inferring quantities-of-interest and associated uncertainties is provided, with a review of the application of LII to various classes of materials, including elemental particles, oxide and nitride materials, and non-soot carbonaceous materials, and core-shell particles. The paper concludes with a discussion of combined and complementary diagnostics, and an outlook of future research.

2.
J Occup Environ Hyg ; 19(10-11): 629-645, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35994755

RESUMEN

The particle filtration efficiency (PFE) of a respirator or face mask is one of its key properties. While the physics of particle filtration results in the PFE being size-dependent, measurement standards are specified using a single, integrated PFE, for simplicity. This integrated PFE is commonly defined concerning either the number (NPFE) or mass (MPFE) distribution of particles as a function of size. This relationship is non-trivial; it is influenced by both the shape of the particle distribution and the fact that multiple practical definitions of particle size are used. This manuscript discusses the relationship between NPFE and MPFE in detail, providing a guide to practitioners. Our discussion begins with a description of the theory underlying different variants of PFE. We then present experimental results for a database of size-resolved PFE (SPFE) measurements for several thousand candidate respirators and filter media, including filter media with systematically varied properties and commercial samples that span 20%-99.8% MPFE. The observed relationships between NPFE and MPFE are discussed in terms of the most-penetrating particle size (MPPS) and charge state of the media. For the sodium chloride particles used here, we observed that the MPFE was greater than NPFE for charged materials and vice versa for uncharged materials. This relationship is observed because a shift from NPFE to MPFE weights the distribution toward larger sizes, while charged materials shift the MPPS to smaller sizes. Results are validated by comparing the output of a pair of automated filter testers, which are used in gauging standards compliance, to that of MPFE computed from a system capable of measuring SPFE over the 20 nm-500 nm range.

3.
Environ Sci Technol ; 49(19): 11950-8, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26340691

RESUMEN

The size and morphology of particulate matter emitted from a light-duty gasoline-direct-injection (GDI) vehicle, over the FTP-75 and US06 transient drive cycles, have been characterized by transmission-electron-microscope (TEM) image analysis. To investigate the impact of gasoline particulate filters on particulate-matter emission, the results for the stock-GDI vehicle, that is, the vehicle in its original configuration, have been compared to the results for the same vehicle equipped with a catalyzed gasoline particulate filter (GPF). The stock-GDI vehicle emits graphitized fractal-like aggregates over all driving conditions. The mean projected area-equivalent diameter of these aggregates is in the 78.4-88.4 nm range and the mean diameter of primary particles varies between 24.6 and 26.6 nm. Post-GPF particles emitted over the US06 cycle appear to have an amorphous structure, and a large number of nucleation-mode particles, depicted as low-contrast ultrafine droplets, are observed in TEM images. This indicates the emission of a substantial amount of semivolatile material during the US06 cycle, most likely generated by the incomplete combustion of accumulated soot in the GPF during regeneration. The size of primary particles and soot aggregates does not vary significantly by implementing the GPF over the FTP-75 cycle; however, particles emitted by the GPF-equipped vehicle over the US06 cycle are about 20% larger than those emitted by the stock-GDI vehicle. This may be attributed to condensation of large amounts of organic material on soot aggregates. High-contrast spots, most likely solid nonvolatile cores, are observed within many of the nucleation-mode particles emitted over the US06 cycle by the GPF-equipped vehicle. These cores are either generated inside the engine or depict incipient soot particles which are partially carbonized in the exhaust line. The effect of drive cycle and the GPF on the fractal parameters of particles, such as fractal dimension and fractal prefactor, is insignificant.


Asunto(s)
Filtración/instrumentación , Gasolina/análisis , Vehículos a Motor , Tamaño de la Partícula , Material Particulado/análisis , Hollín/análisis , Emisiones de Vehículos/análisis , Fractales , Microscopía Electrónica de Transmisión , Nanopartículas/química , Nanopartículas/ultraestructura , Temperatura , Volatilización
4.
Sci Data ; 9(1): 756, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36477095

RESUMEN

Standards governing face masks differ in the test methods used to determine sub-micron particle filtration efficiency (PFE), such that the meaning of PFE is not universal. Unifying the meaning of PFE requires data using these different test methods to drive improvements in standards. This simple data set provides the equivalence between two major test methods used to assess PFE: (1) a test method using a neutralized, polydisperse sodium chloride (NaCl) and (2) a test method using an unneutralized, "monodisperse" polystyrene latex sphere (PSL) aerosols. Measurements are made on over 5800 real-world medical masks, leading to the establishment of a relationship between these two kinds of PFE for these products.


Asunto(s)
Cloruro de Sodio
6.
Appl Opt ; 47(5): 694-703, 2008 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-18268781

RESUMEN

A technique of diffuse-light two-dimensional line-of-sight attenuation (diffuse 2D-LOSA) is described and demonstrated that achieves very high levels of sensitivity in transmissivity measurements (optical thicknesses down to 0.001) while effectively mitigating interferences due to beam steering. An optical system is described in which an arc lamp coupled with an integrating sphere is used as a source of diffuse light that is imaged to the center of the particulate laden medium. The center of the medium is then imaged onto a CCD detector with 1:1 magnification. Comparative measurements with collimated 2D-LOSA in nonpremixed flames demonstrate the accuracy and improved optical noise rejection of the technique. Tests in weakly sooting, nonpremixed methane-air flames, and in high pressure methane-air flames, reveal the excellent sensitivity of diffuse 2D-LOSA, which is primarily limited by the shot noise of the lamp and CCD detector.


Asunto(s)
Refractometría/instrumentación , Hollín/análisis , Absorción , Artefactos , Diseño de Equipo , Etilenos/química , Etilenos/efectos de la radiación , Procesamiento de Imagen Asistido por Computador , Interferometría/instrumentación , Interferometría/métodos , Luz , Iluminación/instrumentación , Iluminación/métodos , Metano/química , Metano/efectos de la radiación , Refractometría/métodos , Dispersión de Radiación
7.
Appl Opt ; 44(31): 6773-85, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16270566

RESUMEN

Laser-induced incandescence (LII) has proved to be a useful diagnostic tool for spatially and temporally resolved measurement of particulate (soot) volume fraction and primary particle size in a wide range of applications, such as steady flames, flickering flames, and Diesel engine exhausts. We present a novel LII technique for the determination of soot volume fraction by measuring the absolute incandescence intensity, avoiding the need for ex situ calibration that typically uses a source of particles with known soot volume fraction. The technique developed in this study further extends the capabilities of existing LII for making practical quantitative measurements of soot. The spectral sensitivity of the detection system is determined by calibrating with an extended source of known radiance, and this sensitivity is then used to interpret the measured LII signals. Although it requires knowledge of the soot temperature, either from a numerical model of soot particle heating or experimentally determined by detecting LII signals at two different wavelengths, this technique offers a calibration-independent procedure for measuring soot volume fraction. Application of this technique to soot concentration measurements is demonstrated in a laminar diffusion flame.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA