Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(50): e2310491120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38055742

RESUMEN

Lipid nanoparticles (LNPs) are advanced core-shell particles for messenger RNA (mRNA) based therapies that are made of polyethylene glycol (PEG) lipid, distearoylphosphatidylcholine (DSPC), cationic ionizable lipid (CIL), cholesterol (chol), and mRNA. Yet the mechanism of pH-dependent response that is believed to cause endosomal release of LNPs is not well understood. Here, we show that eGFP (enhanced green fluorescent protein) protein expression in the mouse liver mediated by the ionizable lipids DLin-MC3-DMA (MC3), DLin-KC2-DMA (KC2), and DLinDMA (DD) ranks MC3 ≥ KC2 > DD despite similar delivery of mRNA per cell in all cell fractions isolated. We hypothesize that the three CIL-LNPs react differently to pH changes and hence study the structure of CIL/chol bulk phases in water. Using synchrotron X-ray scattering a sequence of ordered CIL/chol mesophases with lowering pH values are observed. These phases show isotropic inverse micellar, cubic Fd3m inverse micellar, inverse hexagonal [Formula: see text] and bicontinuous cubic Pn3m symmetry. If polyadenylic acid, as mRNA surrogate, is added to CIL/chol, excess lipid coexists with a condensed nucleic acid lipid [Formula: see text] phase. The next-neighbor distance in the excess phase shows a discontinuity at the Fd3m inverse micellar to inverse hexagonal [Formula: see text] transition occurring at pH 6 with distinctly larger spacing and hydration for DD vs. MC3 and KC2. In mRNA LNPs, DD showed larger internal spacing, as well as retarded onset and reduced level of DD-LNP-mediated eGFP expression in vitro compared to MC3 and KC2. Our data suggest that the pH-driven Fd3m-[Formula: see text] transition in bulk phases is a hallmark of CIL-specific differences in mRNA LNP efficacy.


Asunto(s)
Liposomas , Nanopartículas , Animales , Ratones , Nanopartículas/química , Micelas , Concentración de Iones de Hidrógeno , ARN Mensajero/genética , ARN Mensajero/química , ARN Interferente Pequeño/genética
2.
Am J Physiol Gastrointest Liver Physiol ; 318(4): G803-G815, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32116021

RESUMEN

Liver sinusoidal endothelial cells (LSECs) are the first liver cells to encounter waste macromolecules, pathogens, and toxins in blood. LSECs are highly specialized to mediate the clearance of these substances via endocytic scavenger receptors and are equipped with fenestrae that mediate the passage of macromolecules toward hepatocytes. Although some transcription factors (TFs) are known to play a role in LSEC specialization, information about the specialized LSEC signature and its transcriptional determinants remains incomplete.Based on a comparison of liver, heart, and brain endothelial cells (ECs), we established a 30-gene LSEC signature comprising both established and newly identified markers, including 7 genes encoding TFs. To evaluate the LSEC TF regulatory network, we artificially increased the expression of the 7 LSEC-specific TFs in human umbilical vein ECs. Although Zinc finger E-box-binding protein 2, homeobox B5, Cut-like homolog 2, and transcription factor EC (TCFEC) had limited contributions, musculoaponeurotic fibrosarcoma (C-MAF), GATA binding protein 4 (GATA4), and MEIS homeobox 2 (MEIS2) emerged as stronger inducers of LSEC marker expression. Furthermore, a combination of C-MAF, GATA4, and MEIS2 showed a synergistic effect on the increase of LSEC signature genes, including liver/lymph node-specific ICAM-3 grabbing non-integrin (L-SIGN) (or C-type lectin domain family member M (CLEC4M)), mannose receptor C-Type 1 (MRC1), legumain (LGMN), G protein-coupled receptor 182 (GPR182), Plexin C1 (PLXNC1), and solute carrier organic anion transporter family member 2A1 (SLCO2A1). Accordingly, L-SIGN, MRC1, pro-LGMN, GPR182, PLXNC1, and SLCO2A1 protein levels were elevated by this combined overexpression. Although receptor-mediated endocytosis was not significantly induced by the triple TF combination, it enhanced binding to E2, the hepatitis C virus host-binding protein. We conclude that C-MAF, GATA4, and MEIS2 are important transcriptional regulators of the unique LSEC fingerprint and LSEC interaction with viruses. Additional factors are however required to fully recapitulate the molecular, morphological, and functional LSEC fingerprint.NEW & NOTEWORTHY Liver sinusoidal endothelial cells (LSECs) are the first liver cells to encounter waste macromolecules, pathogens, and toxins in the blood and are highly specialized. Although some transcription factors are known to play a role in LSEC specialization, information about the specialized LSEC signature and its transcriptional determinants remains incomplete. Here, we show that Musculoaponeurotic Fibrosarcoma (C-MAF), GATA binding protein 4 (GATA4), and Meis homeobox 2 (MEIS2) are important transcriptional regulators of the unique LSEC signature and that they affect the interaction of LSECs with viruses.


Asunto(s)
Células Endoteliales/fisiología , Regulación de la Expresión Génica/fisiología , Hígado/citología , Animales , Marcadores Genéticos , Humanos , Hígado/metabolismo , Masculino , Especificidad de Órganos , Ratas , Transcriptoma
3.
Arch Toxicol ; 93(6): 1609-1637, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31250071

RESUMEN

Drug-induced liver injury (DILI) cannot be accurately predicted by animal models. In addition, currently available in vitro methods do not allow for the estimation of hepatotoxic doses or the determination of an acceptable daily intake (ADI). To overcome this limitation, an in vitro/in silico method was established that predicts the risk of human DILI in relation to oral doses and blood concentrations. This method can be used to estimate DILI risk if the maximal blood concentration (Cmax) of the test compound is known. Moreover, an ADI can be estimated even for compounds without information on blood concentrations. To systematically optimize the in vitro system, two novel test performance metrics were introduced, the toxicity separation index (TSI) which quantifies how well a test differentiates between hepatotoxic and non-hepatotoxic compounds, and the toxicity estimation index (TEI) which measures how well hepatotoxic blood concentrations in vivo can be estimated. In vitro test performance was optimized for a training set of 28 compounds, based on TSI and TEI, demonstrating that (1) concentrations where cytotoxicity first becomes evident in vitro (EC10) yielded better metrics than higher toxicity thresholds (EC50); (2) compound incubation for 48 h was better than 24 h, with no further improvement of TSI after 7 days incubation; (3) metrics were moderately improved by adding gene expression to the test battery; (4) evaluation of pharmacokinetic parameters demonstrated that total blood compound concentrations and the 95%-population-based percentile of Cmax were best suited to estimate human toxicity. With a support vector machine-based classifier, using EC10 and Cmax as variables, the cross-validated sensitivity, specificity and accuracy for hepatotoxicity prediction were 100, 88 and 93%, respectively. Concentrations in the culture medium allowed extrapolation to blood concentrations in vivo that are associated with a specific probability of hepatotoxicity and the corresponding oral doses were obtained by reverse modeling. Application of this in vitro/in silico method to the rat hepatotoxicant pulegone resulted in an ADI that was similar to values previously established based on animal experiments. In conclusion, the proposed method links oral doses and blood concentrations of test compounds to the probability of hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Administración Oral , Algoritmos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Técnicas In Vitro , Dosis Máxima Tolerada , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/sangre , Farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Máquina de Vectores de Soporte
4.
Ann Hepatol ; 15(3): 427-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27049497

RESUMEN

BACKGROUND: Pulmonary complications are common in acute liver failure (ALF). The role of the lungs in the uptake of harmful soluble endogenous macromolecules was evaluated in a porcine model of ALF induced by hepatic devascularization (n = 8) vs. controls (n = 8). In additional experiments, pulmonary uptake was investigated in healthy pigs. Fluorochrome-labeled modified albumin (MA) was applied to investigate the cellular uptake. RESULTS: As compared to controls, the ALF group displayed a 4-fold net increased lung uptake of hyaluronan, and 5-fold net increased uptake of both tissue plasminogen activator and lysosomal enzymes. Anatomical distribution experiments in healthy animals revealed that radiolabeled MA uptake (taken up by the same receptor as hyaluronan) was 53% by the liver, and 24% by the lungs. The lung uptake of LPS was 14% whereas 60% remained in the blood. Both fluorescence and electron microscopy revealed initial uptake of MA by pulmonary endothelial cells (PECs) with later translocation to pulmonary intravascular macrophages (PIMs). Moreover, the presence of PIMs was evident 10 min after injection. Systemic inflammatory markers such as leukopenia and increased serum TNF-α levels were evident after 20 min in the MA and LPS groups. CONCLUSION: Significant lung uptake of harmful soluble macromolecules compensated for the defect liver scavenger function in the ALF-group. Infusion of MA induced increased TNF-α serum levels and leukopenia, similar to the effect of the known inflammatory mediator LPS. These observations suggest a potential mechanism that may contribute to lung damage secondary to liver disease.


Asunto(s)
Células Endoteliales/metabolismo , Fallo Hepático Agudo/metabolismo , Lesión Pulmonar/metabolismo , Pulmón/metabolismo , Animales , Transporte Biológico , Modelos Animales de Enfermedad , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Ácido Hialurónico/metabolismo , Mediadores de Inflamación/sangre , Fallo Hepático Agudo/sangre , Fallo Hepático Agudo/complicaciones , Lesión Pulmonar/sangre , Lesión Pulmonar/etiología , Macrófagos Alveolares/metabolismo , Albúmina Sérica/metabolismo , Sus scrofa , Factores de Tiempo
5.
Phys Chem Chem Phys ; 16(24): 12576-81, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24830784

RESUMEN

Liver sinusoidal endothelial cells (LSEC) are an important class of endothelial cells facilitating the translocation of lipoproteins and small molecules between the liver and blood. A number of clinical conditions, especially metabolic and aging-related disorders, are implicated by improper function of LSECs. Despite their importance, research into these cells is limited because the primary ultrastructures involved in their function are transcellular pores, called fenestrations, with diameters in a size range between 50-200 nm, i.e. well below the optical diffraction limit. Here, we show that we are able to resolve fenestrations with a spatial resolution of ∼20 nm by direct stochastic optical reconstruction microscopy (dSTORM). The cellular plasma membrane was labeled at high fluorophore density with CellMask Deep Red and imaged using a reducing buffer system. We compare the higher degree of structural detail that dSTORM provides to results obtained by 3D structured illumination microscopy (3D-SIM). Our results open up a path to image these physiologically important cells in vitro using highly resolving localization microscopy techniques that could be implemented on non-specialized fluorescence microscopes, enabling their investigation in most biomedical laboratories without the need for electron microscopy.


Asunto(s)
Hígado/metabolismo , Microscopía/métodos , Animales , Endotelio/metabolismo , Hígado/citología , Masculino , Ratas , Ratas Sprague-Dawley , Procesos Estocásticos
6.
mSphere ; 9(3): e0070223, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38415633

RESUMEN

Phage treatment has regained attention due to an increase in multiresistant bacteria. For phage therapy to be successful, phages must reach their target bacteria in sufficiently high numbers. Blood-borne phages are believed to be captured by macrophages in the liver and spleen. Since liver sinusoids also consist of specialized scavenger liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs), this study investigated the contribution of both cell types in the elimination of Escherichia coli phage K1Fg10b::gfp (K1Fgfp) in mice. Circulatory half-life, organ, and hepatocellular distribution of K1Fgfp were determined following intravenous administration. Internalization of K1Fgfp and effects of phage opsonization on uptake were explored using primary mouse and human LSEC and KC cultures. When inoculated with 107 virions, >95% of the total K1Fgfp load was eliminated from the blood within 20 min, and 94% of the total retrieved K1Fgfp was localized to the liver. Higher doses resulted in slower elimination, possibly reflecting temporary saturation of liver scavenging capacity. Phage DNA was detected in both cell types, with a KC:LSEC ratio of 12:1 per population following cell isolation. Opsonization with plasma proteins increased time-dependent cellular uptake in both LSECs and KCs in vitro. Internalized phages were rapidly transported along the endocytic pathway to lysosomal compartments. Reduced viability of intracellular K1Fgfp corroborated inactivation following endocytosis. This study is the first to identify phage distribution in the liver at the hepatocellular level, confirming clearance of K1Fgfp performed mostly by KCs with a significant uptake also in LSECs.IMPORTANCEFaced with the increasing amounts of bacteria with multidrug antimicrobial resistance, phage therapy has regained attention as a possible treatment option. The phage field has recently experienced an emergence in commercial interest as research has identified new and more efficient ways of identifying and matching phages against resistant superbugs. Currently, phages are unapproved drugs in most parts of the world. For phages to reach broad clinical use, they must be shown to be clinically safe and useful. The results presented herein contribute to increased knowledge about the pharmacokinetics of the T7-like phage K1F in the mammalian system. The cell types of the liver that are responsible for rapid phage blood clearance are identified. Our results highlight the need for more research about appropriate dose regimens when phage therapy is delivered intravenously and advise essential knowledge about cell systems that should be investigated further for detailed phage pharmacodynamics.


Asunto(s)
Bacteriófagos , Ratones , Humanos , Animales , Células Endoteliales , Hepatocitos , Hígado , Endocitosis , Mamíferos
7.
PLoS One ; 18(11): e0293526, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37910485

RESUMEN

Liver sinusoidal endothelial cells (LSECs) are fenestrated endothelial cells with a unique, high endocytic clearance capacity for blood-borne waste macromolecules and colloids. This LSEC scavenger function has been insufficiently characterized in liver disease. The Glmpgt/gt mouse lacks expression of a subunit of the MFSD1/GLMP lysosomal membrane protein transporter complex, is born normal, but soon develops chronic, mild hepatocyte injury, leading to slowly progressing periportal liver fibrosis, and splenomegaly. This study examined how LSEC scavenger function and morphology are affected in the Glmpgt/gt model. FITC-labelled formaldehyde-treated serum albumin (FITC-FSA), a model ligand for LSEC scavenger receptors was administered intravenously into Glmpgt/gt mice, aged 4 months (peak of liver inflammation), 9-10 month, and age-matched Glmpwt/wt mice. Organs were harvested for light and electron microscopy, quantitative image analysis of ligand uptake, collagen accumulation, LSEC ultrastructure, and endocytosis receptor expression (also examined by qPCR and western blot). In both age groups, the Glmpgt/gt mice showed multifocal liver injury and fibrosis. The uptake of FITC-FSA in LSECs was significantly reduced in Glmpgt/gt compared to wild-type mice. Expression of LSEC receptors stabilin-1 (Stab1), and mannose receptor (Mcr1) was almost similar in liver of Glmpgt/gt mice and age-matched controls. At the same time, immunostaining revealed differences in the stabilin-1 expression pattern in sinusoids and accumulation of stabilin-1-positive macrophages in Glmpgt/gt liver. FcγRIIb (Fcgr2b), which mediates LSEC endocytosis of soluble immune complexes was widely and significantly downregulated in Glmpgt/gt liver. Despite increased collagen in space of Disse, LSECs of Glmpgt/gt mice showed well-preserved fenestrae organized in sieve plates but the frequency of holes >400 nm in diameter was increased, especially in areas with hepatocyte damage. In both genotypes, FITC-FSA also distributed to endothelial cells of spleen and bone marrow sinusoids, suggesting that these locations may function as possible compensatory sites of clearance of blood-borne scavenger receptor ligands in liver fibrosis.


Asunto(s)
Células Endoteliales , Hígado , Ratones , Animales , Células Endoteliales/metabolismo , Ligandos , Regulación hacia Abajo , Fluoresceína-5-Isotiocianato/metabolismo , Hígado/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Hepatocitos/metabolismo , Modelos Animales de Enfermedad , Colágeno/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo
8.
Am J Physiol Regul Integr Comp Physiol ; 303(12): R1217-30, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23076875

RESUMEN

To maintain homeostasis, the animal body is equipped with a powerful system to remove circulating waste. This review presents evidence that the scavenger endothelial cell (SEC) is responsible for the clearance of blood-borne waste macromolecules in vertebrates. SECs express pattern-recognition endocytosis receptors (mannose and scavenger receptors), and in mammals, the endocytic Fc gamma-receptor IIb2. This cell type has an endocytic machinery capable of super-efficient uptake and degradation of physiological and foreign waste material, including all major classes of biological macromolecules. In terrestrial vertebrates, most SECs line the wall of the liver sinusoid. In phylogenetically older vertebrates, SECs reside instead in heart, kidney, or gills. SECs, thus, by virtue of their efficient nonphagocytic elimination of physiological and microbial substances, play a critical role in the innate immunity of vertebrates. In major invertebrate phyla, including insects, the same function is carried out by nephrocytes. The concept of a dual-cell principle of waste clearance is introduced to emphasize that professional phagocytes (macrophages in vertebrates; hemocytes in invertebrates) eliminate larger particles (>0.5 µm) by phagocytosis, whereas soluble macromolecules and smaller particles are eliminated efficiently and preferentially by clathrin-mediated endocytosis in nonphagocytic SECs in vertebrates or nephrocytes in invertebrates. Including these cells as important players in immunology and physiology provides an additional basis for understanding host defense and tissue homeostasis.


Asunto(s)
Células Endoteliales/fisiología , Homeostasis/fisiología , Inmunidad/fisiología , Receptores Depuradores/fisiología , Envejecimiento/fisiología , Animales , Endocitosis/fisiología , Humanos , Nefronas/fisiología
9.
Methods Mol Biol ; 2434: 385-402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213033

RESUMEN

Development of the new generation of drugs (e.g., oligo- and polynucleotides administered intravascularly either as free compounds or as nano-formulations) frequently encounters major challenges such as lack of control of targeting and/or delivery. Uncontrolled or unwanted clearance by the liver is a well-known and particularly important hurdle in this respect. Hence, reliable techniques are needed to identify the type(s) of liver cells, receptors, and metabolic mechanisms that are responsible for unwanted clearance of these compounds.We describe here a method for the isolation and culture of the major cell types from mouse liver: hepatocytes (HCs), Kupffer cells (KCs), and liver sinusoidal endothelial cells (LSECs). The presently described protocol employs perfusion of the liver with a collagenase-based enzyme preparation to effectively transform the intact liver to a single cell suspension. From this initial cell suspension HCs are isolated by specified centrifugation schemes, yielding highly pure HC preparations, and KCs and LSECs are isolated by employing magnetic-activated cell sorting (MACS). The MACS protocol makes use of magnetic microbeads conjugated with specific antibodies that bind unique surface antigens on either KCs or LSECs. In this way the two cell types are specifically and separately pulled out of the initial liver cell suspension by applying a magnetic field, resulting in high purity, yield, and viability of the two cell types, allowing functional studies of the cells.If the drug compound in question is to be studied with respect to liver cell distribution of intravascularly administered drug compounds the isolated cells can be analyzed directly after isolation. Detailed studies of receptor-ligand interactions and/or dynamics of intracellular metabolism of the compound can be conducted in primary surface cultures of HCs, LSECs, and KCs established by seeding the isolated cells on specified growth substrates.


Asunto(s)
Macrófagos del Hígado , Preparaciones Farmacéuticas , Animales , Células Endoteliales/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones , Preparaciones Farmacéuticas/metabolismo
10.
PLoS One ; 17(9): e0273843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36054185

RESUMEN

INTRODUCTION: Liver sinusoidal endothelial cells (LSECs) are specialized fenestrated scavenger endothelial cells involved in the elimination of modified plasma proteins and tissue turnover waste macromolecules from blood. LSECs also participate in liver immune responses. A challenge when studying LSEC biology is the rapid loss of the in vivo phenotype in culture. In this study, we have examined biological processes and pathways affected during early-stage primary culture of rat LSECs and checked for cell responses to the pro-inflammatory cytokine interleukin (IL)-1ß and the anti-inflammatory drug dexamethasone. METHODS: LSECs from male Sprague Dawley rats were cultured on type I collagen in 5% oxygen atmosphere in DMEM with serum-free supplements for 2 and 24 h. Quantitative proteomics using tandem mass tag technology was used to examine proteins in cells and supernatants. Validation was done with qPCR, ELISA, multiplex immunoassay, and caspase 3/7 assay. Cell ultrastructure was examined by scanning electron microscopy, and scavenger function by quantitative endocytosis assays. RESULTS: LSECs cultured for 24 h showed a characteristic pro-inflammatory phenotype both in the presence and absence of IL-1ß, with upregulation of cellular responses to cytokines and interferon-γ, cell-cell adhesion, and glycolysis, increased expression of fatty acid binding proteins (FABP4, FABP5), and downregulation of several membrane receptors (STAB1, STAB2, LYVE1, CLEC4G) and proteins in pyruvate metabolism, citric acid cycle, fatty acid elongation, amino acid metabolism, and oxidation-reduction processes. Dexamethasone inhibited apoptosis and improved LSEC viability in culture, repressed inflammatory and immune regulatory pathways and secretion of IL-1ß and IL-6, and further upregulated FABP4 and FABP5 compared to time-matched controls. The LSEC porosity and endocytic activity were reduced at 24 h both with and without dexamethasone but the dexamethasone-treated cells showed a less stressed phenotype. CONCLUSION: Rat LSECs become activated towards a pro-inflammatory phenotype during early culture. Dexamethasone represses LSEC activation, inhibits apoptosis, and improves cell viability.


Asunto(s)
Células Endoteliales , Proteoma , Animales , Dexametasona/metabolismo , Dexametasona/farmacología , Células Endoteliales/metabolismo , Hígado/metabolismo , Masculino , Proteoma/metabolismo , Ratas , Ratas Sprague-Dawley , Secretoma
11.
J Hepatol ; 55(6): 1346-52, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21703209

RESUMEN

BACKGROUND & AIMS: The low density lipoprotein receptor-related protein-1 (LRP-1) is a large, multifunctional endocytic receptor from the LDL receptor family, highly expressed in liver parenchymal cells (PCs), neurons, activated astrocytes, and fibroblasts. The aim of the study was to investigate if liver sinusoidal endothelial cells (LSECs), highly specialized scavenger cells, express LRP-1. METHODS: To address this question, experiments were performed in vivo and in vitro to determine if receptor associated protein (RAP) and trypsin-activated α(2)-macroglobulin (α(2)M∗) were endocytosed in LSECs. RESULTS: Both ligands were cleared from the circulation mainly by the liver. Hepatocellular distribution of intravenously administered ligands, assessed after magnetic bead cell separation using LSEC- and KC-specific antibodies, showed that PCs contained 93% and 82% of liver-associated (125)I-RAP and (125)I-α(2)M∗, whereas 5% and 11% were associated with LSECs. Uptake of RAP and α(2)M∗ in the different liver cell population in vitro was specific and followed by degradation. The uptake of (125)I-RAP was not inhibited by ligands to known endocytosis receptors in LSECs, while uptake of (125)I-α(2)M∗ was significantly inhibited by RAP, suggesting the involvement of LRP-1. Immunofluorescence using LRP-1 antibody showed positive staining in LSECs. Ligand blot analyses using total cell proteins and (125)I-RAP followed by mass spectrometry further confirmed and identified LRP-1 in LSECs. CONCLUSIONS: LSECs express functional LRP-1. An important implication of our findings is that LSECs contribute to the rapid removal of blood borne ligands for LRP-1 and may thus play a role in lipid homeostasis.


Asunto(s)
Hígado/citología , Hígado/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Animales , Endocitosis , Células Endoteliales/metabolismo , Técnicas In Vitro , Cinética , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/metabolismo , Ligandos , Circulación Hepática , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , alfa-Macroglobulinas/metabolismo
12.
Am J Physiol Gastrointest Liver Physiol ; 300(1): G71-81, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21030611

RESUMEN

Atherogenesis is associated with elevated levels of low-density lipoprotein (LDL) and its oxidized form (oxLDL) in the blood. The liver is an important scavenger organ for circulating oxLDLs. The present study aimed to examine endocytosis of mildly oxLDL (the major circulating form of oxLDLs) in liver sinusoidal endothelial cells (LSECs) and the involvement of the scavenger receptors stabilin-1 and stabilin-2 in this process. Freshly isolated LSECs, Kupffer cells (KCs), and stabilin-1- and stabilin-2-transfected human embryonic kidney cells were incubated with fluorescently labeled or radiolabeled oxLDLs [oxidized for 3 h (oxLDL(3)), 6 h, or 24 h (oxLDL(24))] to measure endocytosis. The intracellular localization of oxLDLs and stabilins in LSECs was examined by immunofluorescence and immunogold electron microscopy. Whereas oxLDL(24) was endocytosed both by LSECs and KCs, oxLDL(3) (mildly oxLDL) was taken up by LSECs only. The LSEC uptake of oxLDLs was significantly inhibited by the scavenger receptor ligand formaldehyde-treated serum albumin. Uptake of all modified LDLs was high in stabilin-1-transfected cells, whereas stabilin-2-transfected cells preferentially took up oxLDL(24), suggesting that stabilin-1 is a more important receptor for mildly oxLDLs than stabilin-2. Double immunogold labeling experiments in LSECs indicated interactions of stabilin-1 and stabilin-2 with oxLDL(3) on the cell surface, in coated pits, and endocytic vesicles. LSECs but not KCs endocytosed mildly oxLDL. Both stabilin-1 and stabilin-2 were involved in the LSEC endocytosis of oxLDLs, but experiments with stabilin-transfected cells pointed to stabilin-1 as the most important receptor for mildly oxLDL.


Asunto(s)
Endocitosis/fisiología , Células Endoteliales/metabolismo , Lipoproteínas LDL/metabolismo , Hígado/citología , Animales , Antígenos CD36/biosíntesis , Moléculas de Adhesión Celular Neuronal/farmacología , Células HEK293 , Humanos , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratas , Receptores Depuradores de Clase E/biosíntesis , Transfección
13.
Am J Physiol Gastrointest Liver Physiol ; 301(4): G684-93, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21778464

RESUMEN

Oxidized low-density lipoproteins (oxLDLs) are involved in proinflammatory and cytotoxic events in different microcirculatory systems. The liver is an important scavenger organ for circulating oxLDLs. However, the interaction of oxLDL with the hepatic microcirculation has been poorly investigated. The present study was conducted to examine the effects of differently modified oxLDLs on the hepatic microvasculature. C57Bl/6J mice were injected intravenously with low-density lipoprotein (LDL), or LDL oxidized for 3 h (oxLDL(3)) or 24 h (oxLDL(24)), at doses resembling oxLDL plasma levels in cardiovascular disease patients. Radioiodinated ligands were used to measure blood decay and organ distribution, and nonlabeled ligands to evaluate microcirculatory responses, examined by in vivo microscopy 30-60 min after ligand injection, immunohistochemistry, and scanning and transmission electron microscopy. Mildly oxLDL (oxLDL(3)) was cleared from blood at a markedly slower rate than heavily oxLDL (oxLDL(24)), but significantly faster than LDL (P < 0.01). Injected oxLDLs distributed to liver. OxLDL effects were most pronounced in central areas of the liver lobules where oxLDL(3) elicited a significant (P < 0.05) reduction in perfused sinusoids, and both oxLDL(3) and oxLDL(24) significantly increased the numbers of swollen endothelial cells and adherent leukocytes compared with LDL (P < 0.05). OxLDL-treated livers also exhibited increased intercellular adhesion molecule (ICAM)-1 centrilobular staining. Electron microscopy showed a 30% increased thickness of the liver sinusoidal endothelium in the oxLDL(3) group (P < 0.05) and a reduced sinusoidal fenestration in centrilobular areas with increased oxidation of LDL (P for linear trend <0.05). In conclusion, OxLDL induced several acute changes in the liver microvasculature, which may lead to sinusoidal endothelial dysfunction.


Asunto(s)
Lipoproteínas LDL/farmacología , Hígado/irrigación sanguínea , Microvasos/efectos de los fármacos , Animales , Adhesión Celular/efectos de los fármacos , Humanos , Molécula 1 de Adhesión Intercelular/biosíntesis , Radioisótopos de Yodo , Leucocitos/inmunología , Lipoproteínas LDL/sangre , Hígado/efectos de los fármacos , Masculino , Ratones , Microscopía Electrónica de Rastreo , Distribución Tisular
14.
Hepatology ; 51(6): 2172-82, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20513002

RESUMEN

UNLABELLED: Mannose receptor (ManR)-mediated liver sinusoidal endothelial cell (LSEC) endocytosis plays a role in antigen presentation and innate immunity, but its role in hepatic metastasis is unknown. We studied ManR-mediated endocytosis during C26 colorectal cancer cell interaction with LSECs and its implications in metastasis. Uptake of labeled ManR ligands (mannan and ovalbumin) and immunohistochemistry were used to study ManR endocytosis and expression. Several interleukin (IL)-1 inhibitors and the cyclooxygenase-2 (COX-2) inhibitor celecoxib were used to analyze the role of IL-1 and COX-2 in ManR regulation. Anti-mouse ManR antibodies and ManR knockout (ManR(-/-)) mice were used to identify ManR-dependent mechanisms during antitumor immune response of liver sinusoidal lymphocytes (LSLs) interacting with tumor-activated LSECs. ManR expression and endocytosis increased in tumor-activated LSECs through a two-step mechanism: (1) Release of COX-2-dependent IL-1-stimulating factors by lymphocyte function-associated antigen-1-expressing C26 cells in response to intercellular adhesion molecule-1 (ICAM-1), which was expressed and secreted by tumor-activated LSECs; and (2) widespread up-regulation of ManR in LSECs through tumor-induced IL-1. In addition, LSLs that had interacted with tumor-activated LSECs in vivo decreased their antitumor cytotoxicity and interferon (IFN)-gamma secretion while they increased IL-10 release ex vivo. IFN-gamma/IL-10 ratio also decreased in the hepatic blood from tumor-injected mice. Immunosuppressant effects of tumor-activated LSECs on LSLs were abrogated in both LSECs from ManR(-/-) mice and tumor-activated LSECs given anti-mouse ManR antibodies. CONCLUSION: ICAM-1-induced tumor COX-2 decreased antitumor activity during hepatic metastasis through IL-1-induced ManR. ManR constituted a common mediator for prometastatic effects of IL-1, COX-2, and ICAM-1. A rise in hepatic IFN-gamma/IL-10 ratio and antitumor cytotoxicity by way of ManR blockade is consistent with the antimetastatic effects of IL-1, COX-2, and ICAM-1 inhibitors. These data support ManR and ManR-stimulating factors as targets for hepatic colorectal metastasis therapy.


Asunto(s)
Carcinoma/inmunología , Neoplasias del Colon/inmunología , Endocitosis/inmunología , Lectinas Tipo C/metabolismo , Hígado/inmunología , Lectinas de Unión a Manosa/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Carcinoma/metabolismo , Carcinoma/secundario , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Interleucina-1/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/secundario , Linfocitos/metabolismo , Masculino , Receptor de Manosa , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
15.
Front Physiol ; 12: 757469, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707514

RESUMEN

The aim of this review is to give an outline of the blood clearance function of the liver sinusoidal endothelial cells (LSECs) in health and disease. Lining the hundreds of millions of hepatic sinusoids in the human liver the LSECs are perfectly located to survey the constituents of the blood. These cells are equipped with high-affinity receptors and an intracellular vesicle transport apparatus, enabling a remarkably efficient machinery for removal of large molecules and nanoparticles from the blood, thus contributing importantly to maintain blood and tissue homeostasis. We describe here central aspects of LSEC signature receptors that enable the cells to recognize and internalize blood-borne waste macromolecules at great speed and high capacity. Notably, this blood clearance system is a silent process, in the sense that it usually neither requires or elicits cell activation or immune responses. Most of our knowledge about LSECs arises from studies in animals, of which mouse and rat make up the great majority, and some species differences relevant for extrapolating from animal models to human are discussed. In the last part of the review, we discuss comparative aspects of the LSEC scavenger functions and specialized scavenger endothelial cells (SECs) in other vascular beds and in different vertebrate classes. In conclusion, the activity of LSECs and other SECs prevent exposure of a great number of waste products to the immune system, and molecules with noxious biological activities are effectively "silenced" by the rapid clearance in LSECs. An undesired consequence of this avid scavenging system is unwanted uptake of nanomedicines and biologics in the cells. As the development of this new generation of therapeutics evolves, there will be a sharp increase in the need to understand the clearance function of LSECs in health and disease. There is still a significant knowledge gap in how the LSEC clearance function is affected in liver disease.

16.
Eur J Histochem ; 65(4)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34897295

RESUMEN

Autofluorescent granules of various sizes were observed in primary human liver endothelial cells (LSECs) upon laser irradiation using a wide range of wavelengths. Autofluorescence was detected in LAMP-1 positive vesicles, suggesting lysosomal location. Confocal imaging of freshly prepared cultures and imaging flow cytometry of non-cultured cells revealed fluorescence in all channels used. Treatment with a lipofuscin autofluorescence quencher reduced autofluorescence, most efficiently in the near UV-area. These results, combined with the knowledge of the very active blood clearance function of LSECs support the notion that lysosomally located autofluorescent material reflected accumulation of lipofuscin in the intact liver. These results illustrate the importance of careful selection of fluorophores, especially when labelling of live cells where the quencher is not compatible.


Asunto(s)
Células Endoteliales/metabolismo , Lipofuscina/metabolismo , Hígado/metabolismo , Adulto , Células Endoteliales/citología , Fluorescencia , Humanos , Hígado/citología , Microscopía Fluorescente
17.
J Struct Biol ; 171(3): 382-8, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20570732

RESUMEN

Fenestrations are pores in liver sinusoidal endothelial cells that filter substrates and debris between the blood and hepatocytes. Fenestrations have significant roles in aging and the regulation of lipoproteins. However their small size (<200 nm) has prohibited any functional analysis by light microscopy. We employed structured illumination light microscopy to observe fenestrations in isolated rat liver sinusoidal endothelial cells with great clarity and spatial resolution. With this method, the three-dimensional structure of fenestrations (diameter 123+/-24 nm) and sieve plates was elucidated and it was shown that fenestrations occur in areas of abrupt cytoplasmic thinning (165+/-54 nm vs. 292+/-103 nm in non-fenestrated regions, P<0.0001). Sieve plates were not preferentially co-localized with fluorescently labeled F-actin stress fibers and endothelial nitric oxide synthase but appeared to occur in primarily attenuated non-raft regions of the cell membrane. Labyrinthine structures were not seen and all fenestrations were short cylindrical pores. In conclusion, three-dimensional structured illumination microscopy has enabled the unlimited power of fluorescent immunostaining and co-localization to reveal new structural and functional information about fenestrations and sieve plates.


Asunto(s)
Células Endoteliales/citología , Hepatocitos/citología , Actinas , Animales , Membrana Celular/metabolismo , Células Endoteliales/metabolismo , Técnica del Anticuerpo Fluorescente , Hepatocitos/metabolismo , Hígado/citología , Hígado/metabolismo , Masculino , Microscopía , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas , Ratas Sprague-Dawley
18.
Hepatology ; 50(3): 900-8, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19585612

RESUMEN

UNLABELLED: Ammonia metabolism in the liver has been largely credited to hepatocytes (HCs). We have shown that liver nonparenchymal cells that include liver sinusoidal endothelial cells (LSECs) produce ammonia. To address the limited knowledge regarding a role for LSECs in ammonia metabolism, we investigated the ammonia metabolism of isolated LSECs and HCs under three different conditions: (1) bioreactors containing LSECs (LSEC-bioreactors), (2) bioreactors containing HCs (HC-bioreactors), and (3) separate bioreactors containing LSECs and HCs connected in sequence (Seq-bioreactors). Our results showed that LSEC-bioreactors released six-fold more ammonia (22.2 nM/hour/10(6) cells) into the growth media than HC-bioreactors (3.3 nM/hour/10(6) cells) and Seq-bioreactors (3.8 nM/hour/10(6) cells). The glutamate released by LSEC-bioreactors (32.0 nM/hour/10(6) cells) was over four-fold larger than that released by HC-bioreactors and Seq-bioreactors (<7 nM/hour/10(6) cells). LSEC-bioreactors and HC-bioreactors consumed large amounts of glutamine (>25 nM/hour/10(6) cells). Glutaminase is known for catalyzing glutamine into glutamate and ammonia. To determine if this mechanism may be responsible for the large levels of glutamate and ammonia found in LSEC-bioreactors, immunolabeling of glutaminase and messenger RNA expression were tested. Our results demonstrated that glutaminase was present with colocalization of an LSEC-specific functional probe in lysosomes of LSECs. Furthermore, using a nucleotide sequence specific for kidney-type glutaminase, reverse-transcription polymerase chain reaction revealed that this isoform of glutaminase was expressed in porcine LSECs. CONCLUSION: LSECs released large amounts of ammonia, perhaps due to the presence of glutaminase in lysosomes. The ammonia and glutamate released by LSECs in Seq-bioreactors were used by hepatocytes, suggesting an intrahepatic collaboration between these two cell types.


Asunto(s)
Amoníaco/metabolismo , Células Endoteliales/metabolismo , Hígado/metabolismo , Animales , Reactores Biológicos , Ácido Glutámico/biosíntesis , Glutaminasa/metabolismo , Glutamina/metabolismo , Hepatocitos/metabolismo , Ácido Láctico/metabolismo , Lisosomas/enzimología , Masculino , Sus scrofa
19.
BMC Mol Cell Biol ; 21(1): 85, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33246411

RESUMEN

BACKGROUND: Liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs; liver resident macrophages) form the body's most effective scavenger cell system for the removal of harmful blood-borne substances, ranging from modified self-proteins to pathogens and xenobiotics. Controversies in the literature regarding the LSEC phenotype pose a challenge when determining distinct functionalities of KCs and LSECs. This may be due to overlapping functions of the two cells, insufficient purification and/or identification of the cells, rapid dedifferentiation of LSECs in vitro, or species differences. We therefore characterized and quantitatively compared expressed gene products of freshly isolated, highly pure LSECs (fenestrated SE-1/FcγRIIb2+) and KCs (CD11b/c+) from Sprague Dawley, Crl:CD (SD), male rats using high throughput mRNA-sequencing and label-free proteomics. RESULTS: We observed a robust correlation between the proteomes and transcriptomes of the two cell types. Integrative analysis of the global molecular profile demonstrated the immunological aspects of LSECs. The constitutive expression of several immune genes and corresponding proteins of LSECs bore some resemblance with the expression in macrophages. LSECs and KCs both expressed high levels of scavenger receptors (SR) and C-type lectins. Equivalent expression of SR-A1 (Msr1), mannose receptor (Mrc1), SR-B1 (Scarb1), and SR-B3 (Scarb2) suggested functional similarity between the two cell types, while functional distinction between the cells was evidenced by LSEC-specific expression of the SRs stabilin-1 (Stab1) and stabilin-2 (Stab2), and the C-type lectins LSECtin (Clec4g) and DC-SIGNR (Clec4m). Many immune regulatory factors were differentially expressed in LSECs and KCs, with one cell predominantly expressing a specific cytokine/chemokine and the other cell the cognate receptor, illustrating the complex cytokine milieu of the sinusoids. Both cells expressed genes and proteins involved in antigen processing and presentation, and lymphocyte co-stimulation. CONCLUSIONS: Our findings support complementary and partly overlapping scavenging and immune functions of LSECs and KCs. This highlights the importance of including LSECs in studies of liver immunity, and liver clearance and toxicity of large molecule drugs and nano-formulations.


Asunto(s)
Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Hígado/citología , Macrófagos/metabolismo , Proteoma/metabolismo , Animales , Presentación de Antígeno/inmunología , Antígenos CD11/metabolismo , Regulación de la Expresión Génica , Ontología de Genes , Macrófagos del Hígado/metabolismo , Lectinas/genética , Lectinas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Activación de Linfocitos/inmunología , Masculino , Ratas Sprague-Dawley , Receptores Depuradores/genética , Receptores Depuradores/metabolismo
20.
Sci Rep ; 10(1): 898, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31965000

RESUMEN

The liver is constantly exposed to dietary antigens, viruses, and bacterial products with inflammatory potential. For decades cellular uptake of virus has been studied in connection with infection, while the few studies designed to look into clearance mechanisms focused mainly on the role of macrophages. In recent years, attention has been directed towards the liver sinusoidal endothelial cells (LSECs), which play a central role in liver innate immunity by their ability to scavenge pathogen- and damage-associated molecular patterns. Every day our bodies are exposed to billions of gut-derived pathogens which must be efficiently removed from the circulation to prevent inflammatory and/or immune reactions in other vascular beds. Here, we have used GFP-labelled Enterobacteria phage T4 (GFP-T4-phage) as a model virus to study the viral scavenging function and metabolism in LSECs. The uptake of GFP-T4-phages was followed in real-time using deconvolution microscopy, and LSEC identity confirmed by visualization of fenestrae using structured illumination microscopy. By combining these imaging modalities with quantitative uptake and inhibition studies of radiolabelled GFP-T4-phages, we demonstrate that the bacteriophages are effectively degraded in the lysosomal compartment. Due to their high ability to take up and degrade circulating bacteriophages the LSECs may act as a primary anti-viral defence mechanism.


Asunto(s)
Bacteriófago T4/patogenicidad , Hígado/citología , Hígado/virología , Animales , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Células Cultivadas , Endocitosis , Células Endoteliales/metabolismo , Células Endoteliales/virología , Proteínas Fluorescentes Verdes/genética , Interacciones Huésped-Patógeno/fisiología , Lisosomas/virología , Masculino , Microorganismos Modificados Genéticamente , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA