Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 144(7): 074903, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26896998

RESUMEN

The behavior of poly(propylene imine) (PPI) dendrimers in concentrated solutions has been investigated using molecular dynamics simulations containing up to a thousand PPI dendrimers of generation 4 or 5 in explicit water. To deal with large system sizes and time scales required to study the solutions over a wide range of dendrimer concentrations, a previously published coarse-grained model was applied. Simulation results on the radius of gyration, structure factor, intermolecular spacing, dendrimer interpenetration, and water penetration are compared with available experimental data, providing a clear concentration dependent molecular picture of PPI dendrimers. It is shown that with increasing concentration the dendrimer volume diminishes accompanied by a reduction of internalized water, ultimately resulting in solvent filled cavities between stacked dendrimers. Concurrently dendrimer interpenetration increases only slightly, leaving each dendrimer a separate entity also at high concentrations. Moreover, we compare apparent structure factors, as calculated in experimental studies relying on the decoupling approximation and the constant atomic form factor assumption, with directly computed structure factors. We demonstrate that these already diverge at rather low concentrations, not because of small changes in form factor, but rather because the decoupling approximation fails as monomer positions of separate dendrimers become correlated at concentrations well below the overlap concentration.

2.
J Phys Chem B ; 113(25): 8731-7, 2009 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19485364

RESUMEN

A variety of factors, including changes in temperature or osmotic pressure, can trigger morphological transitions of vesicles. Upon osmotic upshift, water diffuses across the membrane in response to the osmotic difference, resulting in a decreased vesicle volume to membrane area ratio and, consequently, a different shape. In this paper, we study the vesicle deformations on osmotic deflation using coarse grained molecular dynamics simulations. Simple deflation of a spontaneously formed spherical vesicle results in oblate ellipsoid and discous vesicles. However, when the hydration of the lipids in the outer membrane leaflet is increased, which can be the result of a changed pH or ion concentration, prolate ellipsoid, pear-shaped and budded vesicles are formed. Under certain conditions the deflation even results in vesicle fission. The simulations also show that vesicles formed by a bilayer to vesicle transition are, although spontaneously formed, not immediately stress-free. Instead, the membrane is stretched during the final stage of the transition and only reaches equilibrium once the excess interior water has diffused across the membrane. This suggests the presence of residual membrane stress immediately after vesicle closure in experimental vesicle formation and is especially important for MD simulations of vesicles where the time scale to reach equilibrium is out of reach.


Asunto(s)
Membranas Artificiales , Membrana Dobles de Lípidos/química , Presión Osmótica , Factores de Tiempo , Agua/química
3.
Macromolecules ; 52(7): 2778-2788, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-30983632

RESUMEN

Multivalency is an important instrument in the supramolecular chemistry toolkit for the creation of strong specific interactions. In this paper we investigate the multivalency effect in a dendritic host-guest system using molecular dynamics simulations. Specifically, we consider urea-adamantyl decorated poly(propyleneimine) dendrimers that together with compatible mono-, bi-, and tetravalent ureidoacetic acid guests can form dynamic patchy nanoparticles. First, we simulate the self-assembly of these particles into macromolecular nanostructures, showing guest-controlled reduction of dendrimer aggregation. Subsequently, we systematically study guest concentration dependent multivalent binding. At low guest concentrations multivalency of the guests clearly increases relative binding as tethered headgroups bind more often than free guests' headgroups. We find that despite an abundance of binding sites, most of the tethered headgroups bind in close proximity, irrespective of the spacer length; nevertheless, longer spacers do increase binding. At high guest concentrations the dendrimer becomes saturated with bound headgroups, independent of guest valency. However, in direct competition the tetravalent guests prevail over the monovalent ones. This demonstrates the benefit of multivalency at high as well as low concentrations.

4.
J Am Chem Soc ; 129(50): 15631-8, 2007 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18027942

RESUMEN

We provide detailed insight into complex supramolecular assembly processes by fully characterizing a multicomponent model system using dynamic light scattering, cryogenic transmission electron microscopy, atomic force microscopy, and various NMR techniques. First, a preassembly of a host molecule (the fifth-generation urea-adamantyl poly(propylene imine) dendrimer) and 32 guest molecules (a water- and chloroform-soluble ureidoacetic acid guest) was made in chloroform. The association constant in chloroform is concealed by guest self-association and is therefore higher than 10(3) M(-1). Via the neat state the single-host complex was transferred to water, where larger dendrimer-based assemblies were formed. The core of these assemblies, consisting of multiple host molecules (on average three), is kinetically trapped upon dissolution in water, and its size is constant irrespective of the concentration. The guest molecules forming the corona of the assemblies, however, stay dynamic since they are still in rapid exchange on the NMR time scale, as they were in chloroform. A stepwise noncovalent synthesis provides a means to obtain metastable dynamic supramolecular assemblies in water, structures that cannot be formed in one step.


Asunto(s)
Dendrímeros/química , Agua/química , Cloroformo/química , Simulación por Computador , Microscopía por Crioelectrón , Espectroscopía de Resonancia Magnética , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Modelos Químicos , Estructura Molecular , Volumetría
5.
J Phys Chem B ; 111(20): 5719-25, 2007 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-17425354

RESUMEN

Shape transformations and topological changes of lipid vesicles, such as fusion, budding, and fission, have important chemical physical and biological significance. In this paper, we study the fission process of lipid vesicles. Two distinct routes are considered that are both based on an asymmetry of the lipid distribution within the membrane. This asymmetry consists of a nonuniform distribution of two types of lipids. In the first mechanism, the two types of lipids are equally distributed over both leaflets of the membrane. Phase separation of the lipids within both leaflets, however, results in the formation of rafts, which form buds that can split off. In the second mechanism, the asymmetry consists of a difference in composition between the two monolayers of the membrane. This difference in composition yields a spontaneous curvature, reshaping the vesicle into a dumbbell such that it can split. Both pathways are studied with molecular dynamics simulations using a coarse-grained lipid model. For each of the pathways, the conditions required to obtain complete fission are investigated, and it is shown that for the second pathway, much smaller differences between the lipids are needed to obtain fission than for the first pathway. Furthermore, the lipid composition of the resulting split vesicles is shown to be completely different for both pathways, and essential differences between the fission pathway and the pathway of the inverse process, i.e., fusion, are shown to exist.


Asunto(s)
Lípidos/química , Modelos Moleculares
6.
J Phys Chem B ; 110(26): 13212-9, 2006 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-16805634

RESUMEN

Many different hypotheses on the molecular mechanisms of vesicle fusion exist. Because these mechanisms cannot be readily asserted experimentally, we address the problem by a coarse-grained molecular dynamics simulations study and compare the results with the results of other techniques. The simulations performed include the fusion of small and large vesicles and exocytosis, i.e., the fusion of small vesicles with flat bilayers. We demonstrate that the stalk, the initial contact between two fusing vesicles, is initiated by lipid tails that extend spontaneously. The stalk is revealed to be composed of the contacting monolayers only, yet without hydrophobic voids. Anisotropic and radial expansion of the stalk have been theorized; we show that stalk evolution can proceed via both pathways starting from similar setups and that water triggers the transition from elongated stalk to hemifusion diaphragm.


Asunto(s)
Fusión de Membrana , Exocitosis , Membrana Dobles de Lípidos
7.
J Phys Chem B ; 110(27): 13614-23, 2006 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-16821889

RESUMEN

Molecular transport between organelles is predominantly governed by vesicle fission and fusion. Unlike experimental vesicles, the fused vesicles in molecular dynamics simulations do not become spherical readily, because the lipid and water distribution is inappropriate for the fused state and spontaneous amendment is slow. Here, we study the hypothesis that enhanced transport across the membrane of water, lipids, or both is required to produce spherical vesicles. This is done by adding several kinds of model proteins to fusing vesicles. The results show that equilibration of both water and lipid content is a requirement for spherical vesicles. In addition, the effect of these transmembrane proteins is studied in bilayers and vesicles, including investigations into hydrophobic matching and aggregation. Our simulations show that the level of aggregation does not only depend on hydrophobic mismatch, but also on protein shape. Additionally, one of the proteins promotes fusion by inducing pore formation. Incorporation of these proteins allows even flat membranes to fuse spontaneously. Moreover, we encountered a novel spontaneous vesicle enlargement mechanism we call the engulfing lobe, which may explain how lipids added to a vesicle solution are quickly incorporated into the inner monolayer.


Asunto(s)
Fusión de Membrana , Proteínas de la Membrana/química , Membrana Dobles de Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA