RESUMEN
BACKGROUND: Collagen XVII is most typically associated with human disease when biallelic COL17A1 variants (>230) cause junctional epidermolysis bullosa (JEB), a rare, genetically heterogeneous, mucocutaneous blistering disease with amelogenesis imperfecta (AI), a developmental enamel defect. Despite recognition that heterozygous carriers in JEB families can have AI, and that heterozygous COL17A1 variants also cause dominant corneal epithelial recurrent erosion dystrophy (ERED), the importance of heterozygous COL17A1 variants causing dominant non-syndromic AI is not widely recognised. METHODS: Probands from an AI cohort were screened by single molecule molecular inversion probes or targeted hybridisation capture (both a custom panel and whole exome sequencing) for COL17A1 variants. Patient phenotypes were assessed by clinical examination and analyses of affected teeth. RESULTS: Nineteen unrelated probands with isolated AI (no co-segregating features) had 17 heterozygous, potentially pathogenic COL17A1 variants, including missense, premature termination codons, frameshift and splice site variants in both the endo-domains and the ecto-domains of the protein. The AI phenotype was consistent with enamel of near normal thickness and variable focal hypoplasia with surface irregularities including pitting. CONCLUSION: These results indicate that COL17A1 variants are a frequent cause of dominantly inherited non-syndromic AI. Comparison of variants implicated in AI and JEB identifies similarities in type and distribution, with five identified in both conditions, one of which may also cause ERED. Increased availability of genetic testing means that more individuals will receive reports of heterozygous COL17A1 variants. We propose that patients with isolated AI or ERED, due to COL17A1 variants, should be considered as potential carriers for JEB and counselled accordingly, reflecting the importance of multidisciplinary care.
Asunto(s)
Amelogénesis Imperfecta , Colágenos no Fibrilares , Humanos , Colágenos no Fibrilares/genética , Colágenos no Fibrilares/metabolismo , Autoantígenos/genética , Amelogénesis Imperfecta/genética , Heterocigoto , Fenotipo , Mutación/genéticaRESUMEN
BACKGROUND: Plexins are large transmembrane receptors for the semaphorin family of signalling proteins. Semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Nine plexin genes have been identified in humans, but despite the apparent importance of plexins in development, only biallelic PLXND1 and PLXNA1 variants have so far been associated with Mendelian genetic disease. METHODS: Eight individuals from six families presented with a recessively inherited variable clinical condition, with core features of amelogenesis imperfecta (AI) and sensorineural hearing loss (SNHL), with variable intellectual disability. Probands were investigated by exome or genome sequencing. Common variants and those unlikely to affect function were excluded. Variants consistent with autosomal recessive inheritance were prioritised. Variant segregation analysis was performed by Sanger sequencing. RNA expression analysis was conducted in C57Bl6 mice. RESULTS: Rare biallelic pathogenic variants in plexin B2 (PLXNB2), a large transmembrane semaphorin receptor protein, were found to segregate with disease in all six families. The variants identified include missense, nonsense, splicing changes and a multiexon deletion. Plxnb2 expression was detected in differentiating ameloblasts. CONCLUSION: We identify rare biallelic pathogenic variants in PLXNB2 as a cause of a new autosomal recessive, phenotypically diverse syndrome with AI and SNHL as core features. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. The variable syndromic human phenotype overlaps with that seen in Plxnb2 knockout mice, and, together with the rarity of human PLXNB2 variants, may explain why pathogenic variants in PLXNB2 have not been reported previously.
Asunto(s)
Amelogénesis Imperfecta , Discapacidad Intelectual , Linaje , Humanos , Animales , Masculino , Femenino , Ratones , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Amelogénesis Imperfecta/genética , Amelogénesis Imperfecta/patología , Receptores de Superficie Celular/genética , Proteínas del Tejido Nervioso/genética , Alelos , Niño , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Adulto , Mutación/genética , Adolescente , Preescolar , FenotipoRESUMEN
OBJECTIVE: To identify distinct sleep health phenotypes in adults, examine transitions in sleep health phenotypes over time, and subsequently relate these to the risk of chronic conditions. METHODS: A national sample of adults from the Midlife in the United States study ( N = 3683) provided longitudinal data with two time points (T1: 2004-2006, T2: 2013-2017). Participants self-reported on sleep health (regularity, satisfaction, alertness, efficiency, duration) and the number and type of chronic conditions. Covariates included age, sex, race, education, education, partnered status, number of children, work status, smoking, alcohol, and physical activity. RESULTS: Latent transition analysis identified four sleep health phenotypes across both time points: good sleepers, insomnia sleepers, weekend catch-up sleepers, and nappers. Between T1 and T2, the majority (77%) maintained their phenotype, with the nappers and insomnia sleepers being the most stable. In fully adjusted models with good sleepers at both time points as the reference, being an insomnia sleeper at either time point was related to having an increased number of total chronic conditions by 28%-81% at T2, adjusting for T1 conditions. Insomnia sleepers at both time points were at 72%-188% higher risk for cardiovascular disease, diabetes, depression, and frailty. Being a napper at any time point related to increased risks for diabetes, cancer, and frailty. Being a weekend catch-up sleeper was not associated with chronic conditions. Those with lower education and unemployed were more likely to be insomnia sleepers; older adults and retirees were more likely to be nappers. CONCLUSION: Findings indicate a heightened risk of chronic conditions involved in suboptimal sleep health phenotypes, mainly insomnia sleepers.
Asunto(s)
Fenotipo , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Masculino , Trastornos del Inicio y del Mantenimiento del Sueño/epidemiología , Femenino , Persona de Mediana Edad , Enfermedad Crónica , Estudios Longitudinales , Anciano , Estados Unidos/epidemiología , AdultoRESUMEN
BACKGROUND: The shift work schedule is a common work arrangement that can disrupt typical sleep-wake rhythms and lead to negative health consequences. The present study aims to examine the effect of shift work on health-related quality of life (QoL) and explore potential behaviorial mediators (i.e., sleep, eating, exercise, smoking, drinking). METHODS: A cross-sectional survey was conducted among 4,449 petroleum workers in southwest China. Data on shift work status, health behaviors, and physical and mental health QoL were collected. We tested our model using path analysis and the Monte Carlo approach among 2,129 included participants. RESULTS: After adjusting for covariates, shift work did not exhibit a significant direct association with QoL. However, shift work indirectly related to poorer physical health quality of life via less frequent healthy food consumption; shift work also indirectly related to poorer mental health QoL via both less frequent healthy food consumption and physical exercise. No significant indirect effects were found via sleeping, smoking, or drinking. CONCLUSIONS: Results suggest that shift work presents a challenge for QoL among Chinese petroleum workers due to their lesser engagement in two specific health behaviors: healthy eating and physical exercise. Healthy eating and exercise may present an even more prominent threat to shift workers' QoL than sleep and substance use. Strategies targeting shift work schedule as well as eating and exercise behaviors may help protect against poor QoL and adverse physical and mental health outcomes in this vulnerable group.
Asunto(s)
Ejercicio Físico , Conductas Relacionadas con la Salud , Calidad de Vida , Horario de Trabajo por Turnos , Humanos , Calidad de Vida/psicología , Masculino , Femenino , Estudios Transversales , Adulto , China , Persona de Mediana Edad , Horario de Trabajo por Turnos/psicología , Horario de Trabajo por Turnos/efectos adversos , Ejercicio Físico/psicología , Encuestas y Cuestionarios , Sueño , Petróleo , Tolerancia al Trabajo Programado/psicologíaRESUMEN
The cause of autosomal-dominant retinitis pigmentosa (adRP), which leads to loss of vision and blindness, was investigated in families lacking a molecular diagnosis. A refined locus for adRP on Chr17q22 (RP17) was delineated through genotyping and genome sequencing, leading to the identification of structural variants (SVs) that segregate with disease. Eight different complex SVs were characterized in 22 adRP-affected families with >300 affected individuals. All RP17 SVs had breakpoints within a genomic region spanning YPEL2 to LINC01476. To investigate the mechanism of disease, we reprogrammed fibroblasts from affected individuals and controls into induced pluripotent stem cells (iPSCs) and differentiated them into photoreceptor precursor cells (PPCs) or retinal organoids (ROs). Hi-C was performed on ROs, and differential expression of regional genes and a retinal enhancer RNA at this locus was assessed by qPCR. The epigenetic landscape of the region, and Hi-C RO data, showed that YPEL2 sits within its own topologically associating domain (TAD), rich in enhancers with binding sites for retinal transcription factors. The Hi-C map of RP17 ROs revealed creation of a neo-TAD with ectopic contacts between GDPD1 and retinal enhancers, and modeling of all RP17 SVs was consistent with neo-TADs leading to ectopic retinal-specific enhancer-GDPD1 accessibility. qPCR confirmed increased expression of GDPD1 and increased expression of the retinal enhancer that enters the neo-TAD. Altered TAD structure resulting in increased retinal expression of GDPD1 is the likely convergent mechanism of disease, consistent with a dominant gain of function. Our study highlights the importance of SVs as a genomic mechanism in unsolved Mendelian diseases.
Asunto(s)
Cromosomas Humanos Par 17/química , Proteínas Nucleares/genética , Hidrolasas Diéster Fosfóricas/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Retinitis Pigmentosa/genética , Factores de Transcripción/genética , Adulto , Secuencia de Aminoácidos , Diferenciación Celular , Reprogramación Celular , Niño , Mapeo Cromosómico , Estudios de Cohortes , Elementos de Facilitación Genéticos , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Genes Dominantes , Genoma Humano , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Proteínas Nucleares/metabolismo , Organoides/metabolismo , Organoides/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Polimorfismo Genético , Cultivo Primario de Células , Células Fotorreceptoras Retinianas Conos/patología , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Factores de Transcripción/metabolismo , Secuenciación Completa del GenomaRESUMEN
PURPOSE: To characterize the phenotype observed in a case series with macular disease and determine the cause. DESIGN: Multicenter case series. PARTICIPANTS: Six families (7 patients) with sporadic or multiplex macular disease with onset at 20 to 78 years, and 1 patient with age-related macular degeneration. METHODS: Patients underwent ophthalmic examination; exome, genome, or targeted sequencing; and/or polymerase chain reaction (PCR) amplification of the breakpoint, followed by cloning and Sanger sequencing or direct Sanger sequencing. MAIN OUTCOME MEASURES: Clinical phenotypes, genomic findings, and a hypothesis explaining the mechanism underlying disease in these patients. RESULTS: All 8 cases carried the same deletion encompassing the genes TPRX1, CRX, and SULT2A1, which was absent from 382 control individuals screened by breakpoint PCR and 13 096 Clinical Genetics patients with a range of other inherited conditions screened by array comparative genomic hybridization. Microsatellite genotypes showed that these 7 families are not closely related, but genotypes immediately adjacent to the deletion breakpoints suggest they may share a distant common ancestor. CONCLUSIONS: Previous studies had found that carriers for a single defective CRX allele that was predicted to produce no functional CRX protein had a normal ocular phenotype. Here, we show that CRX whole-gene deletion in fact does cause a dominant late-onset macular disease.
Asunto(s)
Degeneración Macular , Humanos , Hibridación Genómica Comparativa , Degeneración Macular/diagnóstico , Degeneración Macular/genética , Linaje , Fenotipo , Transactivadores/genética , Proteínas de Homeodominio/genéticaRESUMEN
Amelogenesis is the process of enamel formation. For amelogenesis to proceed, the cells of the inner enamel epithelium (IEE) must first proliferate and then differentiate into the enamel-producing ameloblasts. Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective or absent tooth enamel. We identified a 2 bp variant c.817_818GC>AA in SP6, the gene encoding the SP6 transcription factor, in a Caucasian family with autosomal dominant hypoplastic AI. The resulting missense protein change, p.(Ala273Lys), is predicted to alter a DNA-binding residue in the first of three zinc fingers. SP6 has been shown to be crucial to both proliferation of the IEE and to its differentiation into ameloblasts. SP6 has also been implicated as an AI candidate gene through its study in rodent models. We investigated the effect of the missense variant in SP6 (p.(Ala273Lys)) using surface plasmon resonance protein-DNA binding studies. We identified a potential SP6 binding motif in the AMBN proximal promoter sequence and showed that wild-type (WT) SP6 binds more strongly to it than the mutant protein. We hypothesize that SP6 variants may be a very rare cause of AI due to the critical roles of SP6 in development and that the relatively mild effect of the missense variant identified in this study is sufficient to affect amelogenesis causing AI, but not so severe as to be incompatible with life. We suggest that current AI cohorts, both with autosomal recessive and dominant disease, be screened for SP6 variants.
Asunto(s)
Amelogénesis Imperfecta/genética , Proteínas de Unión al ADN/genética , Proteínas del Esmalte Dental/genética , Factores de Transcripción de Tipo Kruppel/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Ameloblastos/metabolismo , Ameloblastos/patología , Amelogénesis Imperfecta/patología , Proteínas Relacionadas con la Autofagia/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Esmalte Dental/crecimiento & desarrollo , Esmalte Dental/patología , Femenino , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Masculino , Mutación Missense/genética , Linaje , Regiones Promotoras Genéticas/genética , Diente/crecimiento & desarrollo , Diente/patología , Secuenciación del ExomaRESUMEN
PURPOSE: HER2-directed therapies enable some patients with de novo HER2+ metastatic breast cancer (MBC) to achieve long-term, durable responses (DR). Expert opinion dictates indefinite HER2-directed therapies for patients who achieve DRs, but real-world examples of this practice are lacking in the literature. Patient factors that predict DR continue to be elucidated. METHODS: This is a retrospective study of patients with de novo HER2 + MBC. DR is defined as absence of progression/death at any point after diagnosis. Controls are patients with evidence of progression/death. Age, ER/PR status, sites of metastasis, surgical resection of primary tumor, and initial treatment were analyzed. RESULTS: 96 patients with de novo HER2 + MBC, 28 with DR, and 68 with progression were identified. 75% of patients with DR had a single metastatic site, compared with 47% of patients with progression (OR 3.7, p = 0.01). 64% of patients with DR received a regimen containing trastuzumab, pertuzumab, and a taxane, while 28% of patients who progressed did (OR 4.5, p < 0.001). 57% of patients with DR underwent surgical removal of breast primary, compared with 24% of patients who progressed (OR 4.3, p = 0.002.) Among patients with DR, nine patients have been receiving trastuzumab for over ten years with no evidence of disease and one patient opted to discontinue trastuzumab. CONCLUSION: Nearly a third of patients with de novo HER2 + MBC achieved DR. Factors that correlate with DR include single metastatic site, initial trastuzumab, pertuzumab and taxane therapy, and surgical resection of primary tumor. Among patients with DR, indefinite trastuzumab administration is the norm.
Asunto(s)
Neoplasias de la Mama , Neoplasias Primarias Secundarias , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Hidrocarburos Aromáticos con Puentes , Femenino , Humanos , Metástasis de la Neoplasia , Receptor ErbB-2 , Estudios Retrospectivos , Taxoides , Trastuzumab/uso terapéutico , Resultado del TratamientoRESUMEN
Amelogenesis imperfecta (AI) describes a heterogeneous group of developmental enamel defects that typically have Mendelian inheritance. Exome sequencing of 10 families with recessive hypomaturation AI revealed four novel and one known variants in the matrix metallopeptidase 20 (MMP20) gene that were predicted to be pathogenic. MMP20 encodes a protease that cleaves the developing extracellular enamel matrix and is necessary for normal enamel crystal growth during amelogenesis. New homozygous missense changes were shared between four families of Pakistani heritage (c.625G>C; p.(Glu209Gln)) and two of Omani origin (c.710C>A; p.(Ser237Tyr)). In two families of UK origin and one from Costa Rica, affected individuals were homozygous for the previously reported c.954-2A>T; p.(Ile319Phefs*19) variant. For each of these variants, microsatellite haplotypes appeared to exclude a recent founder effect, but elements of haplotype were conserved, suggesting more distant founding ancestors. New compound heterozygous changes were identified in one family of the European heritage: c.809_811+12delinsCCAG; p.(?) and c.1122A>C; p.(Gln374His). This report further elucidates the mutation spectrum of MMP20 and the probable impact on protein function, confirms a consistent hypomaturation phenotype and shows that mutations in MMP20 are a common cause of autosomal recessive AI in some communities.
Asunto(s)
Amelogénesis Imperfecta , Metaloproteinasa 20 de la Matriz , Amelogénesis Imperfecta/genética , Amelogénesis Imperfecta/patología , Efecto Fundador , Homocigoto , Humanos , Metaloproteinasa 20 de la Matriz/genética , LinajeRESUMEN
PURPOSE: Cyclin-dependent kinase (CDK) 4/6 inhibitors are integral treatment for advanced hormone receptor positive breast cancer; however, venous thromboembolic events (VTE) occurred in 1%-5% of clinical trial patients. Thrombosis rates in the real-world setting remain unclear. We aimed to define the rate of thromboembolic events, risk factors for thrombosis on CDK 4/6 inhibitors and evaluate the Khorana VTE risk score as a predictive tool for VTE in patients on CDK 4/6 therapy. METHODS: Multicenter retrospective analysis of adult breast cancer patients prescribed palbociclib, ribociclib, or abemaciclib. The primary endpoint was thrombosis during treatment or within 30 days of CDK inhibitor discontinuation. Cox regression was used to model time-to-thrombosis, starting from a patient's initiation of CDK 4/6 therapy. The extended Kaplan-Meier method and Cox modeling were used to assess the effect of time-varying thrombosis status on overall survival. RESULTS: Two hundred and sixty-six patients were included (89% on palbociclib, 14% on abemaciclib, 7% on ribociclib). Twenty-nine thrombotic events occurred in 26 (9.8%) women. Of these events, 72% were venous and 34% were arterial. The 1-year incidence of thrombosis was 10.4% overall, 10.9% on palbociclib, 8.3% on ribociclib, and 4.8% on abemaciclib. Hemoglobin less than 10 g/dL was a statistically significant predictor of thrombosis (HR 3.53, P: .014). Khorana score ranged from 0-3, with the majority between 0 and 1 and was not predictive of VTE. Thrombosis was associated with reduced overall survival (HR 1.28, P: .128, median 7.3 months) compared to not having a CDK-associated clot (median 35.7 months). DISCUSSION: VTE in our analysis is higher than reported in clinical trials and arterial thrombosis comprised over one-third of events. The highest incidence was with palbociclib, followed by ribociclib. Khorana score did not predict VTE risk. Larger, real-world studies are needed. The role for prophylactic anticoagulation is yet to be defined in this patient population.
Asunto(s)
Neoplasias de la Mama/complicaciones , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/efectos adversos , Trombosis/etiología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/epidemiología , Duración de la Terapia , Femenino , Humanos , Incidencia , Terapia Molecular Dirigida/efectos adversos , Terapia Molecular Dirigida/métodos , Evaluación de Resultado en la Atención de Salud , Pronóstico , Inhibidores de Proteínas Quinasas/uso terapéutico , Estudios Retrospectivos , Ajuste de Riesgo , Factores de Riesgo , Factores Sexuales , Trombosis/epidemiología , Trombosis de la Vena/epidemiología , Trombosis de la Vena/etiologíaRESUMEN
Despite extensive genetic diversity of HIV-1 in chronic infection, a single or few maternal virus variants become the founders of an infant's infection. These transmitted/founder (T/F) variants are of particular interest, as a maternal or infant HIV vaccine should raise envelope (Env) specific IgG responses capable of blocking this group of viruses. However, the maternal or infant factors that contribute to selection of infant T/F viruses are not well understood. In this study, we amplified HIV-1 env genes by single genome amplification from 16 mother-infant transmitting pairs from the U.S. pre-antiretroviral era Women Infant Transmission Study (WITS). Infant T/F and representative maternal non-transmitted Env variants from plasma were identified and used to generate pseudoviruses for paired maternal plasma neutralization sensitivity analysis. Eighteen out of 21 (85%) infant T/F Env pseudoviruses were neutralization resistant to paired maternal plasma. Yet, all infant T/F viruses were neutralization sensitive to a panel of HIV-1 broadly neutralizing antibodies and variably sensitive to heterologous plasma neutralizing antibodies. Also, these infant T/F pseudoviruses were overall more neutralization resistant to paired maternal plasma in comparison to pseudoviruses from maternal non-transmitted variants (p = 0.012). Altogether, our findings suggest that autologous neutralization of circulating viruses by maternal plasma antibodies select for neutralization-resistant viruses that initiate peripartum transmission, raising the speculation that enhancement of this response at the end of pregnancy could further reduce infant HIV-1 infection risk.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Infecciones por VIH/transmisión , VIH-1/genética , Transmisión Vertical de Enfermedad Infecciosa , Plasma/metabolismo , Complicaciones Infecciosas del Embarazo/etiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Femenino , Variación Genética , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Lactante , Pruebas de Neutralización , Periodo Periparto , Embarazo , Complicaciones Infecciosas del Embarazo/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic diseases characterised by dental enamel malformation. Pathogenic variants in at least 33 genes cause syndromic or non-syndromic AI. Recently variants in RELT, encoding an orphan receptor in the tumour necrosis factor (TNF) superfamily, were found to cause recessive AI, as part of a syndrome encompassing small stature and severe childhood infections. Here we describe four additional families with autosomal recessive hypomineralised AI due to previously unreported homozygous mutations in RELT. Three families carried a homozygous missense variant in the fourth exon (c.164C>T, p.(T55I)) and a fourth family carried a homozygous missense variant in the 11th exon (c.1264C>T, p.(R422W)). We found no evidence of additional syndromic symptoms in affected individuals. Analyses of tooth microstructure with computerised tomography and scanning electron microscopy suggest a role for RELT in ameloblasts' coordination and interaction with the enamel matrix. Microsatellite genotyping in families segregating the T55I variant reveals a shared founder haplotype. These findings extend the RELT pathogenic variant spectrum, reveal a founder mutation in the UK Pakistani population and provide detailed analysis of human teeth affected by this hypomineralised phenotype, but do not support a possible syndromic presentation in all those with RELT-variant associated AI.
Asunto(s)
Amelogénesis Imperfecta/genética , Predisposición Genética a la Enfermedad , Receptores del Factor de Necrosis Tumoral/genética , Desmineralización Dental/genética , Amelogénesis Imperfecta/diagnóstico por imagen , Amelogénesis Imperfecta/patología , Exones , Femenino , Homocigoto , Humanos , Masculino , Mutación Missense/genética , Linaje , Fenotipo , Desmineralización Dental/diagnóstico por imagen , Desmineralización Dental/patología , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
'Amelogenesis imperfecta' (AI) describes a group of inherited diseases of dental enamel that have major clinical impact. Here, we identify the aetiology driving AI in mice carrying a p.S55I mutation in enamelin; one of the most commonly mutated proteins underlying AI in humans. Our data indicate that the mutation inhibits the ameloblast secretory pathway leading to ER stress and an activated unfolded protein response (UPR). Initially, with the support of the UPR acting in pro-survival mode, Enamp.S55I heterozygous mice secreted structurally normal enamel. However, enamel secreted thereafter was structurally abnormal; presumably due to the UPR modulating ameloblast behaviour and function in an attempt to relieve ER stress. Homozygous mutant mice failed to produce enamel. We also identified a novel heterozygous ENAMp.L31R mutation causing AI in humans. We hypothesize that ER stress is the aetiological factor in this case of human AI as it shared the characteristic phenotype described above for the Enamp.S55I mouse. We previously demonstrated that AI in mice carrying the Amelxp.Y64H mutation is a proteinopathy. The current data indicate that AI in Enamp.S55I mice is also a proteinopathy, and based on comparative phenotypic analysis, we suggest that human AI resulting from the ENAMp.L31R mutation is another proteinopathic disease. Identifying a common aetiology for AI resulting from mutations in two different genes opens the way for developing pharmaceutical interventions designed to relieve ER stress or modulate the UPR during enamel development to ameliorate the clinical phenotype.
Asunto(s)
Amelogénesis Imperfecta/genética , Amelogénesis Imperfecta/metabolismo , Ameloblastos/metabolismo , Animales , Esmalte Dental/metabolismo , Proteínas del Esmalte Dental/genética , Proteínas del Esmalte Dental/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación Puntual , Estrés Fisiológico , Respuesta de Proteína DesplegadaRESUMEN
Amelogenesis is the process of dental enamel formation, leading to the deposition of the hardest tissue in the human body. This process requires the intricate regulation of ion transport and controlled changes to the pH of the developing enamel matrix. The means by which the enamel organ regulates pH during amelogenesis is largely unknown. We identified rare homozygous variants in GPR68 in three families with amelogenesis imperfecta, a genetically and phenotypically heterogeneous group of inherited conditions associated with abnormal enamel formation. Each of these homozygous variants (a large in-frame deletion, a frameshift deletion, and a missense variant) were predicted to result in loss of function. GPR68 encodes a proton-sensing G-protein-coupled receptor with sensitivity in the pH range that occurs in the developing enamel matrix during amelogenesis. Immunohistochemistry of rat mandibles confirmed localization of GPR68 in the enamel organ at all stages of amelogenesis. Our data identify a role for GPR68 as a proton sensor that is required for proper enamel formation.
Asunto(s)
Amelogénesis Imperfecta/genética , Mutación , Receptores Acoplados a Proteínas G/genética , Amelogénesis/genética , Animales , Secuencia de Bases , Esmalte Dental/crecimiento & desarrollo , Esmalte Dental/patología , Femenino , Homocigoto , Humanos , Concentración de Iones de Hidrógeno , Masculino , Linaje , Ratas , Receptores Acoplados a Proteínas G/análisisRESUMEN
OBJECTIVES: Variants in DLX3 cause tricho-dento-osseous syndrome (TDO, MIM #190320), a systemic condition with hair, nail and bony changes, taurodontism and amelogenesis imperfecta (AI), inherited in an autosomal dominant fashion. Different variants found within this gene are associated with different phenotypic presentations. To date, six different DLX3 variants have been reported in TDO. The aim of this paper was to explore and discuss three recently uncovered new variants in DLX3. SUBJECTS AND METHODS: Whole-exome sequencing identified a new DLX3 variant in one family, recruited as part of an ongoing study of genetic variants associated with AI. Targeted clinical exome sequencing of two further families revealed another new variant of DLX3 and complete heterozygous deletion of DLX3. For all three families, the phenotypes were shown to consist of AI and taurodontism, together with other attenuated features of TDO. RESULTS: c.574delG p.(E192Rfs*66), c.476G>T (p.R159L) and a heterozygous deletion of the entire DLX3 coding region were identified in our families. CONCLUSION: These previously unreported variants add to the growing literature surrounding AI, allowing for more accurate genetic testing and better understanding of the associated clinical consequences.
Asunto(s)
Amelogénesis Imperfecta/genética , Anomalías Craneofaciales/genética , Hipoplasia del Esmalte Dental/genética , Enfermedades del Cabello/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Femenino , Humanos , Masculino , LinajeRESUMEN
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective dental enamel formation. Amelotin (AMTN) is a secreted protein thought to act as a promoter of matrix mineralization in the final stage of enamel development, and is strongly expressed, almost exclusively, in maturation stage ameloblasts. Amtn overexpression and Amtn knockout mouse models have defective enamel with no other associated phenotypes, highlighting AMTN as an excellent candidate gene for human AI. However, no AMTN mutations have yet been associated with human AI. Using whole exome sequencing, we identified an 8,678 bp heterozygous genomic deletion encompassing exons 3-6 of AMTN in a Costa Rican family segregating dominant hypomineralised AI. The deletion corresponds to an in-frame deletion of 92 amino acids, shortening the protein from 209 to 117 residues. Exfoliated primary teeth from an affected family member had enamel that was of a lower mineral density compared to control enamel and exhibited structural defects at least some of which appeared to be associated with organic material as evidenced using elemental analysis. This study demonstrates for the first time that AMTN mutations cause non-syndromic human AI and explores the human phenotype, comparing it with that of mice with disrupted Amtn function.
Asunto(s)
Amelogénesis Imperfecta/genética , Proteínas del Esmalte Dental/genética , Esmalte Dental/patología , Predisposición Genética a la Enfermedad , Amelogénesis Imperfecta/fisiopatología , Secuencia de Aminoácidos/genética , Animales , Esmalte Dental/crecimiento & desarrollo , Modelos Animales de Enfermedad , Exones/genética , Humanos , Ratones , Ratones Noqueados , Fenotipo , Eliminación de Secuencia/genéticaRESUMEN
Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. We ascertained eight families affected by HS and, by using a whole-exome sequencing approach, identified biallelic mutations in PEX1 or PEX6 in six of them. Loss-of-function mutations in both genes are known causes of a spectrum of autosomal-recessive peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome. PBDs are characterized by leukodystrophy, hypotonia, SNHL, retinopathy, and skeletal, craniofacial, and liver abnormalities. We demonstrate that each HS-affected family has at least one hypomorphic allele that results in extremely mild peroxisomal dysfunction. Although individuals with HS share some subtle clinical features found in PBDs, the diagnosis was not suggested by routine blood and skin fibroblast analyses used to detect PBDs. In conclusion, our findings define HS as a mild PBD, expanding the pleiotropy of mutations in PEX1 and PEX6.
Asunto(s)
Adenosina Trifosfatasas/genética , Amelogénesis Imperfecta/genética , Fibroblastos/patología , Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Mutación/genética , Uñas Malformadas/genética , Peroxisomas/patología , ATPasas Asociadas con Actividades Celulares Diversas , Adolescente , Adulto , Estudios de Casos y Controles , Células Cultivadas , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Linaje , Peroxisomas/metabolismo , Fenotipo , Pronóstico , Tasa de Supervivencia , Adulto JovenAsunto(s)
Acrilamidas , Neoplasias Pulmonares , Acrilamidas/farmacología , Acrilamidas/uso terapéutico , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-retRESUMEN
We identified a family in which pitted hypomineralized amelogenesis imperfecta (AI) with premature enamel failure segregated in an autosomal recessive fashion. Whole-exome sequencing revealed a missense mutation (c.586C>A, p.P196T) in the I-domain of integrin-ß6 (ITGB6), which is consistently predicted to be pathogenic by all available programmes and is the only variant that segregates with the disease phenotype. Furthermore, a recent study revealed that mice lacking a functional allele of Itgb6 display a hypomaturation AI phenotype. Phenotypic characterization of affected human teeth in this study showed areas of abnormal prismatic organization, areas of low mineral density and severe abnormal surface pitting in the tooth's coronal portion. We suggest that the pathogenesis of this form of AI may be due to ineffective ligand binding of ITGB6 resulting in either compromised cell-matrix interaction or compromised ITGB6 activation of transforming growth factor-ß (TGF-ß) impacting indirectly on ameloblast-ameloblast interactions and proteolytic processing of extracellular matrix proteins via MMP20. This study adds to the list of genes mutated in AI and further highlights the importance of cell-matrix interactions during enamel formation.