Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 10(16): eadk0217, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38630809

RESUMEN

Biological phenomena, from enzymatic catalysis to synaptic transmission, originate in the structural transformations of biomolecules and biomolecular assemblies in liquid water. However, directly imaging these nanoscopic dynamics without probes or labels has been a fundamental methodological challenge. Here, we developed an approach for "electron videography"-combining liquid phase electron microscopy with molecular modeling-with which we filmed the nanoscale structural fluctuations of individual, suspended, and unlabeled membrane protein nanodiscs in liquid. Systematic comparisons with biochemical data and simulation indicate the graphene encapsulation involved can afford sufficiently reduced effects of the illuminating electron beam for these observations to yield quantitative fingerprints of nanoscale lipid-protein interactions. Our results suggest that lipid-protein interactions delineate dynamically modified membrane domains across unexpectedly long ranges. Moreover, they contribute to the molecular mechanics of the nanodisc as a whole in a manner specific to the protein within. Overall, this work illustrates an experimental approach to film, quantify, and understand biomolecular dynamics at the nanometer scale.


Asunto(s)
Electrones , Nanoestructuras , Proteínas de la Membrana/química , Simulación de Dinámica Molecular , Microscopía Electrónica , Lípidos/química , Membrana Dobles de Lípidos/química , Nanoestructuras/química
2.
Nat Commun ; 15(1): 2852, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605028

RESUMEN

Voids-the nothingness-broadly exist within nanomaterials and impact properties ranging from catalysis to mechanical response. However, understanding nanovoids is challenging due to lack of imaging methods with the needed penetration depth and spatial resolution. Here, we integrate electron tomography, morphometry, graph theory and coarse-grained molecular dynamics simulation to study the formation of interconnected nanovoids in polymer films and their impacts on permeance and nanomechanical behaviour. Using polyamide membranes for molecular separation as a representative system, three-dimensional electron tomography at nanometre resolution reveals nanovoid formation from coalescence of oligomers, supported by coarse-grained molecular dynamics simulations. Void analysis provides otherwise inaccessible inputs for accurate fittings of methanol permeance for polyamide membranes. Three-dimensional structural graphs accounting for the tortuous nanovoids within, measure higher apparent moduli with polyamide membranes of higher graph rigidity. Our study elucidates the significance of nanovoids beyond the nothingness, impacting the synthesis‒morphology‒function relationships of complex nanomaterials.

3.
Adv Mater ; 36(15): e2308720, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38189549

RESUMEN

Template-directed self-assembly of solidifying eutectics results in emergence of unique microstructures due to diffusion constraints and thermal gradients imposed by the template. Here, the importance of selecting the template material based on its conductivity to control heat transfer between the template and the solidifying eutectic, and thus the thermal gradients near the solidification front, is demonstrated. Simulations elucidate the relationship between the thermal properties of the eutectic and template and the resultant microstructure. The overarching finding is that templates with low thermal conductivities are generally advantageous for forming highly organized microstructures. When electrochemically porosified silicon pillars (thermal conductivity < 0.3 Wm-1K-1) are used as the template into which an AgCl-KCl eutectic is solidified, 99% of the unit cells in the solidified structure exhibit the same pattern. In contrast, when higher thermal conductivity crystalline silicon pillars (≈100 Wm-1K-1) are utilized, the expected pattern is only present in 50% of the unit cells. The thermally engineered template results in mesostructures with tunable optical properties and reflectances nearly identical to the simulated reflectances of perfect structures, indicating highly ordered patterns are formed over large areas. This work highlights the importance of controlling heat flows in template-directed self-assembly of eutectics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA