Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Lancet Oncol ; 25(7): 853-864, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834087

RESUMEN

BACKGROUND: Current systemic therapies for metastatic pancreatic ductal adenocarcinoma are associated with poor outcomes with a 5-year overall survival rate under 5%. We aimed to assess the safety and antitumour activity of mitazalimab, a human CD40 agonistic IgG1 antibody, with modified FOLFIRINOX (mFOLFIRINOX; fluorouracil, leucovorin, oxaliplatin, and irinotecan), in chemotherapy-naive patients with metastatic pancreatic ductal adenocarcinoma. METHODS: OPTIMIZE-1 was a single-arm, multicentre, phase 1b/2 study which enrolled adults with histologically-confirmed metastatic pancreatic ductal adenocarcinoma and European Cooperative Oncology Group performance status 0 or 1 in 14 university hospitals in Belgium, France, and Spain. The primary endpoint of phase 1b was to determine the recommended phase 2 dose of intravenous mitazalimab (450 µg/kg or 900 µg/kg) when combined with intravenous mFOLFIRINOX (oxaliplatin 85 mg/m2, leucovorin 400 mg/m2, irinotecan 150 mg/m2, fluorouracil 2400 mg/m2). In the first 21-day treatment cycle, mitazalimab was administered on days 1 and 10, and mFOLFIRINOX on day 8. In subsequent 14-day cycles mitazalimab was administered 2 days after mFOLFIRINOX. The phase 2 primary endpoint was objective response rate. Activity and safety analyses were conducted on the full analysis set (all patients who received the combination of mitazalimab at the recommended phase 2 dose and mFOLFIRINOX for at least two treatment cycles) and safety set (all patients who received any study treatment), respectively. Enrolment is complete, and data represents a primary analysis of the ongoing trial. The trial is registered at Clinicaltrials.gov (NCT04888312). FINDINGS: Between Sept 29, 2021, and March 28, 2023, 88 patients were screened and 70 patients were enrolled (40 [57%] were female and 30 [43%] were male). In phase 1b, 900 µg/kg mitazalimab was determined as the recommended phase 2 dose. Overall, five patients received 450 µg/kg mitazalimab; 65 received 900 µg/kg mitazalimab. No dose-limiting toxicities were observed at 450 µg/kg, and one dose-limiting toxicity was observed at 900 µg/kg. 57 patients were evaluated for activity, and all 70 patients were included in the safety set. At data cutoff on Nov 14, 2023, median follow-up was 12·7 months (95% CI 11·1-15·7). Of the 57 patients, 29 (51%) remained on study and 18 (32%) remained on treatment. The primary endpoint (objective response rate >30%) was met (objective response rates in 23 [40%]; one-sided 90% CI ≥32 of 57 patients). The most common grade 3 or worse adverse events were neutropenia (18 [26%] of 70 patients), hypokalaemia (11 patients [16%]), and anaemia and thrombocytopenia (eight patients [11%]). Serious adverse events were reported in 29 (41%) of 70 patients, the most common being vomiting (five [7%] of 70 patients), decreased appetite (four [6%]), and diarrhoea and cholangitis (three [4%] of 70 patients for each), none considered related to mitazalimab. No treatment-related deaths were reported. INTERPRETATION: Mitazalimab with mFOLFIRINOX demonstrated manageable safety and encouraging activity, warranting continued development in a phase 3, randomised, controlled trial. The results from OPTIMIZE-1 pave the way for further exploration and confirmation of a novel immunotherapy treatment regimen for metastatic pancreatic ductal adenocarcinoma, which is a complex and aggressive cancer with very low survival rates and restricted treatment options. FUNDING: Alligator Bioscience.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Ductal Pancreático , Fluorouracilo , Irinotecán , Leucovorina , Oxaliplatino , Neoplasias Pancreáticas , Humanos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Femenino , Persona de Mediana Edad , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Leucovorina/administración & dosificación , Leucovorina/uso terapéutico , Anciano , Irinotecán/administración & dosificación , Fluorouracilo/administración & dosificación , Oxaliplatino/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Anticuerpos Monoclonales Humanizados/administración & dosificación , Adulto
2.
Cells ; 12(19)2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37830579

RESUMEN

CD40-targeting therapies can enhance the dendritic cell priming of tumor-specific T cells and repolarize intratumoral macrophages to alleviate the tumoral immunosuppressive environment and remodel the extracellular matrix. Mitazalimab is a potent agonistic CD40 monoclonal IgG1 antibody currently under clinical development. This study used RNA sequencing of blood samples from a subset of patients from a Phase I trial with mitazalimab (NCT02829099) to assess peripheral pharmacodynamic activity. We found that mitazalimab induced transient peripheral transcriptomic alterations (at 600 µg/kg and 900 µg/kg dose administered intravenously), which mainly were attributed to immune activation. In particular, the transcriptomic alterations showed a reduction in effector cells (e.g., CD8+ T cells and natural killer cells) and B cells peripherally with the remaining cells (e.g., dendritic cells, monocytes, B cells, and natural killer cells) showing transcription profiles consistent with activation. Lastly, distinct patient subgroups based on the pattern of transcriptomic alterations could be identified. In summary, the data presented herein reinforce the anticipated mode of action of mitazalimab and support its ongoing clinical development.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Monoclonales , Linfocitos T CD8-positivos , Neoplasias , Humanos , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antígenos CD40/inmunología , Neoplasias/tratamiento farmacológico , Análisis de Secuencia de ARN
3.
Int J Cancer ; 124(3): 630-7, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18972433

RESUMEN

We were the first to demonstrate that combined immunotherapy with GM-CSF producing GL261 cells and recombinant IFNgamma of preestablished GL261 gliomas could cure 90% of immunized mice. To extend these findings and to uncover the underlying mechanisms, the ensuing experiments were undertaken. We hypothesized that immunizations combining both GM-CSF and IFNgamma systemically would increase the number of immature myeloid cells, which then would mature and differentiate into dendritic cells (DCs) and macrophages, thereby augmenting tumor antigen presentation and T-cell activation. Indeed, the combined therapy induced a systemic increase of both immature and mature myeloid cells but also an increase in T regulatory cells (T-regs). Cytotoxic anti-tumor responses, mirrored by an increase in Granzyme B-positive cells as well as IFNgamma-producing T-cells, were augmented after immunizations with GM-CSF and IFNgamma. We also show that the combined therapy induced a long-term memory with rejection of intracerebral (i.c.) rechallenges. Depletion of T-cells showed that both CD4+ and CD8+ T-cells were essential for the combined GM-CSF and IFNgamma effect. Finally, when immunizations were delayed until day 5 after tumor inoculation, only mice receiving immunotherapy with both GM-CSF and IFNgamma survived. We conclude that the addition of recombinant IFNgamma to immunizations with GM-CSF producing tumor cells increased the number of activated tumoricidal T-cells, which could eradicate established intracerebral tumors. These results clearly demonstrate that the combination of cytokines in immunotherapy of brain tumors have synergistic effects that have implications for clinical immunotherapy of human malignant brain tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Glioma/tratamiento farmacológico , Glioma/inmunología , Inmunoterapia/métodos , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/administración & dosificación , Memoria Inmunológica/efectos de los fármacos , Interferón gamma/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL
4.
J Immunother Cancer ; 7(1): 103, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975201

RESUMEN

BACKGROUND: The CTLA-4 blocking antibody ipilimumab has demonstrated substantial and durable effects in patients with melanoma. While CTLA-4 therapy, both as monotherapy and in combination with PD-1 targeting therapies, has great potential in many indications, the toxicities of the current treatment regimens may limit their use. Thus, there is a medical need for new CTLA-4 targeting therapies with improved benefit-risk profile. METHODS: ATOR-1015 is a human CTLA-4 x OX40 targeting IgG1 bispecific antibody generated by linking an optimized version of the Ig-like V-type domain of human CD86, a natural CTLA-4 ligand, to an agonistic OX40 antibody. In vitro evaluation of T-cell activation and T regulatory cell (Treg) depletion was performed using purified cells from healthy human donors or cell lines. In vivo anti-tumor responses were studied using human OX40 transgenic (knock-in) mice with established syngeneic tumors. Tumors and spleens from treated mice were analyzed for CD8+ T cell and Treg frequencies, T-cell activation markers and tumor localization using flow cytometry. RESULTS: ATOR-1015 induces T-cell activation and Treg depletion in vitro. Treatment with ATOR-1015 reduces tumor growth and improves survival in several syngeneic tumor models, including bladder, colon and pancreas cancer models. It is further demonstrated that ATOR-1015 induces tumor-specific and long-term immunological memory and enhances the response to PD-1 inhibition. Moreover, ATOR-1015 localizes to the tumor area where it reduces the frequency of Tregs and increases the number and activation of CD8+ T cells. CONCLUSIONS: By targeting CTLA-4 and OX40 simultaneously, ATOR-1015 is directed to the tumor area where it induces enhanced immune activation, and thus has the potential to be a next generation CTLA-4 targeting therapy with improved clinical efficacy and reduced toxicity. ATOR-1015 is also expected to act synergistically with anti-PD-1/PD-L1 therapy. The pre-clinical data support clinical development of ATOR-1015, and a first-in-human trial has started (NCT03782467).


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antígeno CTLA-4/antagonistas & inhibidores , Receptores OX40/agonistas , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Anticuerpos Biespecíficos/uso terapéutico , Células CHO , Antígeno CTLA-4/inmunología , Línea Celular Tumoral/trasplante , Cricetulus , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Cultivo Primario de Células , Prueba de Estudio Conceptual , Receptores OX40/genética , Receptores OX40/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patología
5.
J Immunother ; 32(6): 593-601, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19483650

RESUMEN

Immunotherapy of malignant primary brain tumors holds the potential to improve the dismal prognosis after current clinical therapy. Although immunotherapy of experimental gliomas has been demonstrated to have the capacity to cure intracerebral tumors no convincing effects of immunotherapy have been shown in clinical trials. One reason for this could be that some of the models used do not display full features of human glioblastomas. The N29 rat gliomas exhibited all the histologic features of human glioblastoma multiforme including nuclear atypia, mitotic figures, necrosis, and diffuse infiltration into the normal brain tissue. Surprisingly, immunotherapy with autologous interferon gamma producing tumor cells against preestablished intracerebral N29 tumors yielded a higher cure rate than immunotherapy against less invasive tumors. Furthermore, when immunizations were postponed until day 5 after tumor establishment 50% of the animals survived. When immunizations were postponed until day 11 after tumor establishment no glioma-bearing animals were cured but survival was significantly prolonged. The superior effect of immunotherapy in the invasive N29 model compared with the less invasive tumors could depend on combined effects of up-regulation of major histocompatibility complex I and induction of major histocompatibility complex II plus CD80 after transfection and irradiation of the tumor cells used for immunizations. This study demonstrates that immunotherapy against experimental brain tumors indeed is feasible even against highly invasive and established tumors. These results strengthen the translational potential of immunotherapy against malignant brain tumors.


Asunto(s)
Neoplasias del Sistema Nervioso Central/terapia , Glioma/terapia , Inmunoterapia Adoptiva/métodos , Interferón gamma/inmunología , Animales , Apoptosis/inmunología , Antígeno B7-1/inmunología , Antígeno B7-1/metabolismo , Línea Celular Tumoral , Neoplasias del Sistema Nervioso Central/inmunología , Neoplasias del Sistema Nervioso Central/patología , Glioma/inmunología , Glioma/patología , Complejo Mayor de Histocompatibilidad/inmunología , Masculino , Ratas , Ratas Endogámicas F344
6.
J Immunol ; 179(6): 4231-8, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17785863

RESUMEN

High-grade gliomas are one of the most aggressive human tumors with <1% of patients surviving 5 years after surgery. Immunotherapy could offer a possibility to eradicate remnant tumor cells after conventional therapy. Experimental immunotherapy can induce partial cure of established intracerebral tumors in several rodent models. One reason for the limited therapeutic effects could be immunosuppression induced by both the growing tumor and the induced immune reaction. NO has been implicated in tumor-derived immune suppression in tumor-bearing hosts, and unspecific inhibitors of NO synthase have been shown to boost antitumor immunity. In this study, we show that the inducible NO synthase (iNOS)-specific inhibitor mercaptoethylguanidine (MEG) superiorly enhanced lymphocyte reactivity after polyclonal stimulation compared with the iNOS-specific inhibitor L-NIL and the unspecific NO synthase inhibitor L-NAME. Both iNOS inhibitors increased the number and proliferation of T cells but not of B cells. When combined during postimmunization with IFN-gamma-secreting N32 rat glioma cells of rats harboring intracerebral tumors, only MEG increased the cure rate. However, this was only achieved when MEG was administered after immunizations. These findings implicate that NO has both enhancing and suppressive effects after active immunotherapy.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Glioma/tratamiento farmacológico , Glioma/metabolismo , Guanidinas/administración & dosificación , Inmunoterapia Adoptiva , Interferón gamma/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Animales , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Terapia Combinada , Inhibidores Enzimáticos/administración & dosificación , Glioma/inmunología , Glioma/mortalidad , Inmunización , Interferón gamma/biosíntesis , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Lisina/administración & dosificación , Lisina/análogos & derivados , Óxido Nítrico Sintasa de Tipo II/fisiología , Ratas , Ratas Endogámicas F344 , Bazo/citología , Bazo/efectos de los fármacos , Bazo/inmunología , Sobrevida , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA