Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(17): 12155-12166, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648612

RESUMEN

The fundamental interest in actinide chemistry, particularly for the development of thorium-based materials, is experiencing a renaissance owing to the recent and rapidly growing attention to fuel cycle reactors, radiological daughters for nuclear medicine, and efficient nuclear stockpile development. Herein, we uncover fundamental principles of thorium chemistry on the example of Th-based extended structures such as metal-organic frameworks in comparison with the discrete systems and zirconium extended analogs, demonstrating remarkable over two-and-half-year chemical stability of Th-based frameworks as a function of metal node connectivity, amount of defects, and conformational linker rigidity through comprehensive spectroscopic and crystallographic analysis as well as theoretical modeling. Despite exceptional chemical stability, we report the first example of studies focusing on the reactivity of the most chemically stable Th-based frameworks in comparison with the discrete Th-based systems such as metal-organic complexes and a cage, contrasting multicycle recyclability and selectivity (>97%) of the extended structures in comparison with the molecular compounds. Overall, the presented work not only establishes the conceptual foundation for evaluating the capabilities of Th-based materials but also represents a milestone for their multifaceted future and foreshadows their potential to shape the next era of actinide chemistry.

2.
Eur Spine J ; 33(4): 1340-1346, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38459270

RESUMEN

OBJECTIVE: There is a lack of strong evidence for use of expensive bone substitutes. This study compares perioperative data and patient reported quality-of-life outcomes across the varied types of bone graft extenders. The study analyzes the existing Quality and Outcomes Database and evaluates patient reported outcomes for 1-3 level lumbar fusion procedures comparing across different types of biologics bone graft. METHODS: We retrospectively analyzed a prospectively collected data registry. Bone graft implant data were collected and grouped into the following categories: (1) Autograft with basic allograft (2) Enhanced, synthetic, or cellular allograft (3) Use of BMP. Preoperative and 1 year patient reported outcomes and perioperative data from the prospective collected registry were analyzed. RESULTS: There were 384 patients included in this study. There were 168 (43.8%) patients in group 1, 133 (34.6%) patients in group 2, and 83 (21.6%) in group 3. There were no group differences in baseline or 1 year back pain, leg pain, ODI, or EQ-5D. The GLM Repeated Measures results indicate a significant difference within each of the three groups between the preoperative and postoperative measures for back pain, leg pain, ODI, and EQ-5D. The change over time was not significantly different between the groups. CONCLUSIONS: Bone graft extenders are a significant contributor to the cost of lumbar fusion. This study demonstrates no difference in preoperative, and 1 year patient reported outcomes between the three groups. There was no significant difference in rate of reoperations across the three groups.


Asunto(s)
Fusión Vertebral , Humanos , Estudios Retrospectivos , Resultado del Tratamiento , Estudios Prospectivos , Fusión Vertebral/métodos , Dolor de Espalda/cirugía , Vértebras Lumbares/cirugía
3.
J Am Chem Soc ; 145(18): 10007-10014, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37097728

RESUMEN

As part of our exploration of plutonium-containing materials as potential nuclear waste forms, we report the first extended structure Pu(V) material and the first Pu(V) borate. Crystals of Na2(PuO2)(BO3) were grown out of mixed hydroxide/boric acid flux and found to crystallize in the orthorhombic space group Cmcm with lattice parameters of a = 9.9067(4) Å, b = 6.5909(2) Å, and c = 6.9724(2) Å. Na2(PuO2)(BO3) adopts a layered structure in which layers of PuO2(BO3)2- are separated by sodium cations. Plutonium is found in a pentagonal bipyramidal coordination environment, with axial Pu(V)-O plutonyl bond lengths of 1.876(3) Å and equatorial Pu-O bond lengths ranging from 2.325(5) to 2.467(3) Å. We find that the Pu(V)-O plutonyl bond lengths are approximately 0.1 Å longer than the reported Pu(VI)-O plutonyl bond lengths and shorter by approximately 0.033 Å than the corresponding U(V) uranyl bond lengths. Raman spectroscopy on single crystals was used to determine the PuO2+ plutonyl stretching and the equatorial breathing mode frequencies of the pentagonal bipyramidal coordination environment around plutonium. Density functional theory calculations were used to calculate the Raman spectrum to help identify the Raman bands at 690 and 630 cm-1 as corresponding to the plutonyl(V) ν1 stretch and the equatorial PuO5 breathing mode, respectively. UV-vis measurements on single crystals indicate semiconducting behavior with a band gap of ∼2.60 eV.

4.
Chemistry ; 29(36): e202300698, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37067772

RESUMEN

Herein, we probe the hydrogen bond-driven self-assembly of a triphenylamine (TPA) bis-urea macrocycle in the presence and absence of guests. Comprised of methylene urea-bridged TPAs with exterior tridodecyloxy benzene solubilizing groups, the macrocycle exhibits concentration-dependent aggregate formation in THF and H2 O/THF mixtures as characterized by 1 H NMR and DOSY experiments. Its assembly processes were further probed by temperature-dependent UV/Vis and fluorescence spectroscopy. Upon heating, UV/Vis spectra exhibit a hypsochromic shift in the λmax , while fluorescence spectra show an increase in emission intensity. Conversely, the protected macrocycle that lacks hydrogen bond donors demonstrates no significant change. Thermodynamic analysis indicates a cooperative self-assembly pathway with distinct nucleation and elongation regimes. The morphology and structure of the aggregate were elucidated by dynamic light scattering, atomic force microscopy, scanning and transmission electron microscopy. Variable temperature emission spectra were utilized to monitor the impact of guests, such as diphenylacetylene, that can be bound in the columnar channels. The findings suggest that the elongation of assemblies is influenced by the presence of these guests. In comparison, diphenyl sulfoxide, likely functioning as a chain stopper, limited the assembly size. These studies suggest that judicious selection of (co)monomers may modulate the function and utility of these supramolecular systems.

5.
Inorg Chem ; 62(30): 12089-12098, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37462461

RESUMEN

Mild hydrothermal synthesis was employed to grow high-quality single crystals of ternary fluoridohafnates at low temperatures. The series of new materials was characterized using single-crystal X-ray diffraction, and the crystal structures of AHfF6 (A = Mg and Sr), A2HfF8 (A = Ba and Pb), Ca5Hf3F22, and Cd2HfF8(H2O)6 are discussed herein. Although some material compositions have similar stoichiometries, all of the compositions adopt different structural motifs. A comparison of the crystal structures and synthesis techniques of ternary fluoridohafnates and ternary fluoridozirconates is also reported, and the impact of the subtle changes of synthesis conditions on overall structures is discussed.

6.
Inorg Chem ; 62(34): 13793-13801, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37582123

RESUMEN

Geometric magnetic frustration arises when the geometry of a structure prevents the simultaneous fulfillment of nearest-neighbor antiferromagnetic interactions and is commonly observed in lattices that exhibit a triangular topology, such as those found in the pyrochlore structure. Via a mild hydrothermal route, we have synthesized seven quaternary ß-pyrochlore-related fluorides AxM2+xM3+(2-x)F6 (A = Cs and Rb; M2+ = Co2+, Ni2+, and Zn2+; and M3+ = V3+ and Fe3+). Crystal structures and compositions were determined using a combination of single-crystal X-ray diffraction and energy-dispersive spectroscopy. After adjusting the reaction conditions, phase-pure products of AxM2+xM3+(2-x)F6 were obtained. The magnetic susceptibility and isothermal magnetization data for all seven compounds were collected to interpret the magnetic behavior, which ranged from paramagnetic to antiferromagnetic with and without a ferromagnetic component. We found that the magnetic behavior of the AxM2+xV3+(2-x)F6 pyrochlore structures strongly depends on the presence or absence of unpaired electrons on the M2+ position. The titled pyrochlore compounds, with the exception of the Zn-analogue, can be considered frustrated materials, with frustration indices in the range of 6-13.

7.
Inorg Chem ; 62(44): 18172-18178, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37871183

RESUMEN

A series of transition-metal-containing rare earth thiosilicates, RE3TM0.5SiS7 (RE = Gd-Yb; TM = Fe, Co, Ni), was obtained via flux crystal growth utilizing the boron chalcogen mixture (BCM) method. The series includes the first reported ytterbium-containing thiosilicates crystallizing in this structure type. The thiosilicates crystallize in the hexagonal crystal system in space group P63. The use of the BCM method to synthesize phase-pure samples of the title compounds for magnetic measurements is discussed, highlighting how the approach avoids some of the difficulties that plague typical chalcogenide syntheses. Magnetic measurements demonstrate that some of the compounds order antiferromagnetically and exhibit transition temperatures below 15 K.

8.
Inorg Chem ; 62(19): 7446-7452, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37137155

RESUMEN

Nine new rare earth magnesium-containing thiosilicates of the formula RE3Mg0.5SiS7 (Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) were synthesized in an alkali halide flux using the boron chalcogen mixture (BCM) method. Crystals of high quality were produced, and their structures were determined by single-crystal X-ray diffraction. The compounds crystallize in the hexagonal crystal system in the P63 space group. Phase pure powders of the compounds were used for magnetic susceptibility measurements and for second-harmonic generation (SHG) measurements. Magnetic measurements indicate that Ce3Mg0.5SiS7, Sm3Mg0.5SiS7, and Dy3Mg0.5SiS7 exhibit paramagnetic behavior with a negative Weiss temperature over the 2-300 K temperature range. SHG measurements of La3Mg0.5SiS7 demonstrated SHG activity with an efficiency of 0.16 times the standard potassium dihydrogen phosphate (KDP).

9.
Angew Chem Int Ed Engl ; 62(28): e202304960, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37155943

RESUMEN

Stabilizing nitrogen pnictogen bond interactions were measured using molecular rotors. Intramolecular C=O⋅⋅⋅N interactions were formed in the bond rotation transition states which lowered the rotational barriers and increased the rates of rotation, as measured by EXSY NMR. The pnictogen interaction energies show a very strong correlation with the positive electrostatic potential on nitrogen, which was consistent with a strong electrostatic component. In contrast, the NBO perturbation and pyramidalization analyses show no correlation, suggesting that the orbital-orbital component is minor. The strongest C=O⋅⋅⋅N pnictogen interactions were comparable to C=O⋅⋅⋅C=O interactions and were stronger than C=O⋅⋅⋅Ph interactions, when measured using the same N-phenylimide rotor system. The ability of the nitrogen pnictogen interactions to stabilize transition states and enhance kinetic processes demonstrates their potential in catalysis and reaction design.

10.
Angew Chem Int Ed Engl ; 62(46): e202312223, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37750233

RESUMEN

We report on a dendronized bis-urea macrocycle 1 self-assembling via a cooperative mechanism into two-dimensional (2D) nanosheets formed solely by alternated urea-urea hydrogen bonding interactions. The pure macrocycle self-assembles in bulk into one-dimensional liquid-crystalline columnar phases. In contrast, its self-assembly mode drastically changes in CHCl3 or tetrachloroethane, leading to 2D hydrogen-bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick-like hydrogen bonding pattern between bis-urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non-covalent interaction motif, which is of great interest for materials development.

11.
Angew Chem Int Ed Engl ; 62(37): e202308715, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37486788

RESUMEN

Cooperative behavior and orthogonal responses of two classes of coordinatively integrated photochromic molecules towards distinct external stimuli were demonstrated on the first example of a photo-thermo-responsive hierarchical platform. Synergetic and orthogonal responses to temperature and excitation wavelength are achieved by confining the stimuli-responsive moieties within a metal-organic framework (MOF), leading to the preparation of a novel photo-thermo-responsive spiropyran-diarylethene based material. Synergistic behavior of two photoswitches enables the study of stimuli-responsive resonance energy transfer as well as control of the photoinduced charge transfer processes, milestones required to advance optoelectronics development. Spectroscopic studies in combination with theoretical modeling revealed a nonlinear effect on the material electronic structure arising from the coordinative integration of photoresponsive molecules with distinct photoisomerization mechanisms. Thus, the reported work covers multivariable facets of not only fundamental aspects of photoswitch cooperativity, but also provides a pathway to modulate photophysics and electronics of multidimensional functional materials exhibiting thermo-photochromism.

12.
Angew Chem Int Ed Engl ; 62(2): e202211776, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36346406

RESUMEN

Confinement-imposed photophysics was probed for novel stimuli-responsive hydrazone-based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution-like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady-state and time-resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone-based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.

13.
Angew Chem Int Ed Engl ; 62(5): e202216349, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36450099

RESUMEN

A novel series of heterometallic f-block-frameworks including the first examples of transuranic heterometallic 238 U/239 Pu-metal-organic frameworks (MOFs) and a novel monometallic 239 Pu-analog are reported. In combination with theoretical calculations, we probed the kinetics and thermodynamics of heterometallic actinide(An)-MOF formation and reported the first value of a U-to-Th transmetallation rate. We concluded that formation of uranyl species could be a driving force for solid-state metathesis. Density of states near the Fermi edge, enthalpy of formation, band gap, proton affinity, and thermal/chemical stability were probed as a function of metal ratios. Furthermore, we achieved 97 % of the theoretical maximum capacity for An-integration. These studies shed light on fundamental aspects of actinide chemistry and also foreshadow avenues for the development of emerging classes of An-containing materials, including radioisotope thermoelectric generators or metalloradiopharmaceuticals.

14.
J Am Chem Soc ; 144(10): 4457-4468, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35138840

RESUMEN

Tuning metal oxidation states in metal-organic framework (MOF) nodes by switching between two discrete linker photoisomers via an external stimulus was probed for the first time. On the examples of three novel photochromic copper-based frameworks, we demonstrated the capability of switching between +2 and +1 oxidation states, on demand. In addition to crystallographic methods used for material characterization, the role of the photochromic moieties for tuning the oxidation state was probed via conductivity measurements, cyclic voltammetry, and electron paramagnetic resonance, X-ray photoelectron, and diffuse reflectance spectroscopies. We confirmed the reversible photoswitching activity including photoisomerization rate determination of spiropyran- and diarylethene-containing linkers in extended frameworks, resulting in changes in metal oxidation states as a function of alternating excitation wavelengths. To elucidate the switching process between two states, the photoisomerization quantum yield of photochromic MOFs was determined for the first time. Overall, the introduced noninvasive concept of metal oxidation state modulation on the examples of stimuli-responsive MOFs foreshadows a new pathway for alternation of material properties toward targeted applications.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Metales , Oxidación-Reducción
15.
J Am Chem Soc ; 144(35): 16139-16149, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36027644

RESUMEN

Comparison of defect-controlled leaching-kinetics modulation of metal-organic frameworks (MOFs) and porous functionalized silica-based materials was performed on the example of a radionuclide and radionuclide surrogate for the first time, revealing an unprecedented readsorption phenomenon. On a series of zirconium-based MOFs as model systems, we demonstrated the ability to capture and retain >99% of the transuranic 241Am radionuclide after 1 week of storage. We report the possibility of tailoring radionuclide release kinetics in MOFs through framework defects as a function of postsynthetically installed organic ligands including cation-chelating crown ether-based linkers. Based on comprehensive analysis using spectroscopy (EXAFS, UV-vis, FTIR, and NMR), X-ray crystallography (single crystal and powder), and theoretical calculations (nine kinetics models and structure simulations), we demonstrated the synergy of radionuclide integration methods, topological restrictions, postsynthetic scaffold modification, and defect engineering. This combination is inaccessible in any other material and highlights the advantages of using well-defined frameworks for gaining fundamental knowledge necessary for the advancement of actinide-based material development, providing a pathway for addressing upcoming challenges in the nuclear waste administration sector.


Asunto(s)
Estructuras Metalorgánicas , Cinética , Estructuras Metalorgánicas/química , Porosidad , Radioisótopos , Circonio/química
16.
Inorg Chem ; 61(31): 12262-12274, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35895600

RESUMEN

New zwitterionic dirhenium carbonyl complexes containing ammonioethenyl and phosphonioethenyl ligands have been synthesized and studied. The reaction of Re2(CO)10 with C2H2 and Me3NO yielded the dirhenium complex Re2(CO)9(NMe3) (6) and the new zwitterionic complex Re2(CO)9[η1-E-2-CH═CH(NMe3)] (7). Compound 6 was characterized structurally and was found to have a NMe3 ligand in an equatorial coordination site cis to a long Re-Re single bond, Re-Re = 3.0938(2) Å. Compound 7 can be obtained from the reaction of 6 with ethyne (C2H2) formally by the insertion of ethyne into the Re-N bond to the NMe3 ligand. Compound 7 contains a 2-trimethylammonioethenyl ligand, -CH═CH(+NMe3), that is formally a zwitterion having a positive charge on the nitrogen atom and a negative charge on the terminal carbon atom. When coordinated to rhenium by the terminal ethenyl carbon atom, the negative charge on the -CH═CH(+NMe3) carbon atom is formally transferred to the rhenium atom. The reaction of Re2(CO)10 with C2H2 and NEt3 in the presence of Me3NO yielded the new dirhenium complex Re2(CO)9[η1-E-2-CH═CH(NEt3)] (8) together with some 6 and 7. Compound 8 is structurally similar to 7, but it contains a NEt3 group in the ammonioethenyl ligand in the place of the NMe3 group in 7. Reactions of 7 with PMePh2 and PPh3 yielded the zwitterionic 2-arylphosphonioethenyl-coordinated dirhenium carbonyl complexes, Re2(CO)9[η1-E-2-CH═CH(PPh2Me)] (9a) and Re2(CO)9[η1-E-2-CH═CH(PPh3)] (9b), and the zwitterionic 1-phosphonioethenyl ligand in the dirhenium carbonyl complexes, Re2(CO)9[η1-1-C(PPh2Me)(═CH2)] (10a), Re2(CO)8[µ-η2-1-C(PPh2Me)(═CH2)] (11a), and Re2(CO)8[[µ-η2-1-C(PPh3)(CH2)] (11b). Compound 10a was converted to 11a and the new compound Re2(CO)7(µ-H)[µ-η2-1-(CH2C)P(Ph)(Me)(o-C6H4)], (12) by decarbonylation using Me3NO. Compound 12 contains an ortho-metalated phenyl ring. The new products 6,7, 8, 9b, 10a, 11a, 11b and 12 were characterized structurally by single-crystal X-ray diffraction analyses.

17.
Inorg Chem ; 61(46): 18568-18573, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36351084

RESUMEN

In this work, we report the reactivity of the carboranyl diphosphine, 1-PtBu2-2-PiPr2-C2B10H10, with terminal alkynes, resulting in the formation of boron-containing phosphacycles. The reported system combines the nucleophilic activation of electron-deficient terminal alkynes via electron-rich phosphine groups with the redox behavior of carborane clusters to promote a sequence of metal-free intramolecular B-H bond activation and cyclization, creating an alkenylphosphonium cycle fused with a reduced open nido-carborane cluster.

18.
Inorg Chem ; 61(7): 3256-3262, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35138844

RESUMEN

We report three novel Nb-containing oxide-fluorides, Cs10(Nb2O2F9)3F, Cs9.4K0.6(Nb2O2F9)3F, and Cs10(Nb2O2F9)3Cl, which were prepared as high-quality single crystals via a HF-based mild hydrothermal route. The compounds all crystallize in the trigonal crystal system with space group P3̅m1. All three compositions form the same framework structure consisting of isolated [Nb2O2F9]3- dimers that create hexagonal channels that are occupied by disordered halide species. Upon excitation by UV light at room temperature, these compounds display broad band emission with a maximum at 440 nm for Cs10(Nb2O2F9)3F. The broad band emission of these compounds is attributed to the charge-transfer transitions of Nb-O bonds within the [Nb2O2F9]3- dimers. All three compounds scintillate blue under X-ray irradiation. Radioluminescence (RL) measurements performed on Cs10(Nb2O2F9)3F demonstrate that the RL emission intensity decreases with increasing temperature and that the integrated RL emission (300-750 nm) is 4% of Bi4Ge3O12 (BGO) powder. Thermogravimetric analysis confirms that Cs10(Nb2O2F9)3F has excellent thermal stability up to 600 °C and no structural phase transition is observed prior to sample decomposition.

19.
Inorg Chem ; 61(29): 11232-11242, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35815496

RESUMEN

A series of alkali metal rare-earth borates were prepared via high-temperature flux crystal growth, and their structures were characterized by single crystal X-ray diffraction (SXRD). Na3Ln(BO3)2 (Ln = La-Lu) crystallize in the monoclinic space group P21/n, the potassium series K3Ln(BO3)2 (Ln = La-Tb) crystallize in the orthorhombic space group Pnma, while the Ln = Dy, Ho, Tm, Yb analogues crystallize in the orthorhombic space group Pnnm. To demonstrate the generality of this synthetic technique, high-entropy oxide (HEO) compositions K3Nd0.15(1)Eu0.20(1)Gd0.20(1)Dy0.22(1)Ho0.23(1)(BO3)2 and K3Nd0.26(1)Eu0.29(1)Ho0.22(1)Tm0.14(1)Yb0.10(1)(BO3)2 were obtained in single crystal form. Radiation damage investigations determined that these borates have a high radiation damage tolerance. To assess whether trivalent actinide analogues of Na3Ln(BO3)2 and K3Ln(BO3)2 would be stable, density functional theory was used to calculate their enthalpies of formation, which are favorable.

20.
Phys Chem Chem Phys ; 24(31): 18729-18737, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35899998

RESUMEN

Herein, we report structural, computational, and conductivity studies on urea-directed self-assembled iodinated triphenylamine (TPA) derivatives. Despite numerous reports of conductive TPAs, the challenges of correlating their solid-state assembly with charge transport properties hinder the efficient design of new materials. In this work, we compare the assembled structures of a methylene urea bridged dimer of di-iodo TPA (1) and the corresponding methylene urea di-iodo TPA monomer (2) with a di-iodo mono aldehyde (3) control. These modifications lead to needle shaped crystals for 1 and 2 that are organized by urea hydrogen bonding, π⋯π stacking, I⋯I, and I⋯π interactions as determined by SC-XRD, Hirshfeld surface analysis, and X-ray photoelectron spectroscopy (XPS). The long needle shaped crystals were robust enough to measure the conductivity by two contact probe methods with 2 exhibiting higher conductivity values (∼6 × 10-7 S cm-1) compared to 1 (1.6 × 10-8 S cm-1). Upon UV-irradiation, 1 formed low quantities of persistent radicals with the simple methylurea 2 displaying less radical formation. The electronic properties of 1 were further investigated using valence band XPS, which revealed a significant shift in the valence band upon UV irradiation (0.5-1.9 eV), indicating the potential of these materials as dopant free p-type hole transporters. The electronic structure calculations suggest that the close packing of TPA promotes their electronic coupling and allows effective charge carrier transport. Our results show that ionic additives significantly improve the conductivity up to ∼2.0 × 10-6 S cm-1 in thin films, enabling their implementation in functional devices such as perovskite or solid-state dye sensitized solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA