RESUMEN
This study, conducted at the University of Tennessee's Anthropological Research Facility (ARF), lists and ranks the primary chemical constituents which define the odor of decomposition of human remains as detected at the soil surface of shallow burial sites. Triple sorbent traps were used to collect air samples in the field and revealed eight major classes of chemicals which now contain 478 specific volatile compounds associated with burial decomposition. Samples were analyzed using gas chromatography-mass spectrometry (GC-MS) and were collected below and above the body, and at the soil surface of 1.5-3.5 ft. (0.46-1.07 m) deep burial sites of four individuals over a 4-year time span. New data were incorporated into the previously established Decompositional Odor Analysis (DOA) Database providing identification, chemical trends, and semi-quantitation of chemicals for evaluation. This research identifies the "odor signatures" unique to the decomposition of buried human remains with projected ramifications on human remains detection canine training procedures and in the development of field portable analytical instruments which can be used to locate human remains in shallow burial sites.
Asunto(s)
Entierro , Odorantes , Compuestos Orgánicos/análisis , Cambios Post Mortem , Antropología Forense , Cromatografía de Gases y Espectrometría de Masas , Humanos , VolatilizaciónRESUMEN
This study, conducted at the University of Tennessee's Anthropological Research Facility (ARF), describes the establishment of the Decompositional Odor Analysis (DOA) Database for the purpose of developing a man-portable, chemical sensor capable of detecting clandestine burial sites of human remains, thereby mimicking canine olfaction. This "living" database currently spans the first year and a half of burial, providing identification, chemical trends and semi-quantitation of chemicals liberated below, above and at the surface of graves 1.5 to 3.5 ft deep (0.45 to 1.0 m) for four individuals. Triple sorbent traps (TSTs) were used to collect air samples in the field and revealed eight major classes of chemicals containing 424 specific volatile compounds associated with burial decomposition. This research is the first step toward identification of an "odor signature" unique to human decomposition with projected ramifications on cadaver dog training procedures and in the development of field portable analytical instruments which can be used to locate human remains buried in shallow graves.