Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 32(5): 7640-7650, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439441

RESUMEN

We present a theoretical discussion of multi-band two-photon interference via joint detection by "slow" detectors and extend it to a technique for multi-band ghost imaging. This technique exploits the advantage of two-photon optical beats over classical optical beats with multi-band thermal light, where the beat frequency can be resolved from intensity fluctuation correlation measurement with two relatively slow photodetectors. The underlying two-photon beats represent a two-photon interference phenomenon: a pair of randomly created and randomly paired photons interfering with the pair itself. A notable implication of the two-photon beats is that they can be turbulence-resistant, which makes our result not only of fundamental interest but also practically useful.

2.
BMC Med ; 20(1): 17, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35057816

RESUMEN

BACKGROUND: With the recent certification by World Health Organization that the People's Republic of China is malaria-free, it is timely to consider how elimination of malaria was completed in People's Republic of China over the last 7 decades. Of the four widespread species of human malaria, Plasmodium vivax was the last to be eliminated by the national program of China. Understanding the incubation periods and relapses patterns of P. vivax through historical data from China is relevant for planning disease elimination in other malaria-endemic countries, with residual P. vivax malaria. METHODS: We collated data from both published and unpublished malaria parasite inoculation experiments conducted between 1979 and 1988 with parasites from different regions of the People's Republic of China. The studies had at least two years of follow-up. We categorized P. vivax incubation patterns via cluster analysis and investigated relapse studies by adapting a published within-host relapse model for P. vivax temperate phenotypes. Each model was fitted using the expectation-maximization (EM) algorithm initialized by hierarchical model-based agglomerative clustering. RESULTS: P. vivax parasites from the seven studies of five southern and central provinces in the People's Republic of China covering geographies ranging from the south temperate to north tropical zones. The parasites belonged to two distinct phenotypes: short- (10-19 days) or long-incubation (228-371 days). The larger the sporozoite inoculation, the more likely short incubation periods were observed, and with more subsequent relapses (Spearman's rank correlation between the number of inoculated sporozoites and the number of relapses of 0.51, p-value = 0.0043). The median of the posterior distribution for the duration of the first relapse interval after primary infection was 168.5 days (2.5% quantile: 89.7; 97.5% quantile: 227.69 days). The predicted survival proportions from the within-host model fit well to the original relapse data. The within-host model also captures the hypnozoite activation rates and relapse frequencies, which consequently influences the transmission possibility of P. vivax. CONCLUSIONS: Through a within-host model, we demonstrate the importance of clearance of hypnozoites. A strategy of two rounds of radical hypnozoite clearance via mass drug administration (MDA) deployed during transmission (summer and autumn) and non-transmission (late spring) seasons had a pronounced effect on outbreaks during the malaria epidemics in China. This understanding can inform malaria control strategies in other endemic countries with similar settings.


Asunto(s)
Malaria Vivax , Malaria , Animales , China/epidemiología , Erradicación de la Enfermedad , Humanos , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/epidemiología , Malaria Vivax/prevención & control , Plasmodium vivax , Recurrencia , Esporozoítos
3.
Malar J ; 20(1): 439, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34794430

RESUMEN

Mathematical models are increasingly used to inform decisions throughout product development pathways from pre-clinical studies to country implementation of novel health interventions. This review illustrates the utility of simulation approaches by reviewing the literature on malaria vaccine modelling, with a focus on its link to the development of policy guidance for the first licensed product, RTS,S/AS01. The main contributions of modelling studies have been in inferring the mechanism of action and efficacy profile of RTS,S; to predicting the public health impact; and economic modelling mainly comprising cost-effectiveness analysis. The value of both product-specific and generic modelling of vaccines is highlighted.


Asunto(s)
Vacunas contra la Malaria , Animales , Análisis Costo-Beneficio , Humanos , Vacunas contra la Malaria/economía , Vacunas contra la Malaria/normas , Modelos Biológicos
4.
Malar J ; 20(1): 324, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315473

RESUMEN

BACKGROUND: Larviciding against malaria vectors in Africa has been limited to indoor residual spraying and insecticide-treated nets, but is increasingly being considered by some countries as a complementary strategy. However, despite progress towards improved larvicides and new tools for mapping or treating mosquito-breeding sites, little is known about the optimal deployment strategies for larviciding in different transmission and seasonality settings. METHODS: A malaria transmission model, OpenMalaria, was used to simulate varying larviciding strategies and their impact on host-seeking mosquito densities, entomological inoculation rate (EIR) and malaria prevalence. Variations in coverage, duration, frequency, and timing of larviciding were simulated for three transmission intensities and four transmission seasonality profiles. Malaria transmission was assumed to follow rainfall with a lag of one month. Theoretical sub-Saharan African settings with Anopheles gambiae as the dominant vector were chosen to explore impact. Relative reduction compared to no larviciding was predicted for each indicator during the simulated larviciding period. RESULTS: Larviciding immediately reduced the predicted host-seeking mosquito densities and EIRs to a maximum that approached or exceeded the simulated coverage. Reduction in prevalence was delayed by approximately one month. The relative reduction in prevalence was up to four times higher at low than high transmission. Reducing larviciding frequency (i.e., from every 5 to 10 days) resulted in substantial loss in effectiveness (54, 45 and 53% loss of impact for host-seeking mosquito densities, EIR and prevalence, respectively). In seasonal settings the most effective timing of larviciding was during or at the beginning of the rainy season and least impactful during the dry season, assuming larviciding deployment for four months. CONCLUSION: The results highlight the critical role of deployment strategies on the impact of larviciding. Overall, larviciding would be more effective in settings with low and seasonal transmission, and at the beginning and during the peak densities of the target species populations. For maximum impact, implementers should consider the practical ranges of coverage, duration, frequency, and timing of larviciding in their respective contexts. More operational data and improved calibration would enable models to become a practical tool to support malaria control programmes in developing larviciding strategies that account for the diversity of contexts.


Asunto(s)
Anopheles , Control de Enfermedades Transmisibles/métodos , Insecticidas , Malaria/prevención & control , África del Sur del Sahara , Animales , Anopheles/crecimiento & desarrollo , Simulación por Computador , Larva , Modelos Teóricos
5.
Nature ; 528(7580): S94-101, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26633771

RESUMEN

Mass-screen-and-treat and targeted mass-drug-administration strategies are being considered as a means to interrupt transmission of Plasmodium falciparum malaria. However, the effectiveness of such strategies will depend on the extent to which current and future diagnostics are able to detect those individuals who are infectious to mosquitoes. We estimate the relationship between parasite density and onward infectivity using sensitive quantitative parasite diagnostics and mosquito feeding assays from Burkina Faso. We find that a diagnostic with a lower detection limit of 200 parasites per microlitre would detect 55% of the infectious reservoir (the combined infectivity to mosquitoes of the whole population weighted by how often each individual is bitten) whereas a test with a limit of 20 parasites per microlitre would detect 83% and 2 parasites per microlitre would detect 95% of the infectious reservoir. Using mathematical models, we show that increasing the diagnostic sensitivity from 200 parasites per microlitre (equivalent to microscopy or current rapid diagnostic tests) to 2 parasites per microlitre would increase the number of regions where transmission could be interrupted with a mass-screen-and-treat programme from an entomological inoculation rate below 1 to one of up to 4. The higher sensitivity diagnostic could reduce the number of treatment rounds required to interrupt transmission in areas of lower prevalence. We predict that mass-screen-and-treat with a highly sensitive diagnostic is less effective than mass drug administration owing to the prophylactic protection provided to uninfected individuals by the latter approach. In low-transmission settings such as those in Southeast Asia, we find that a diagnostic tool with a sensitivity of 20 parasites per microlitre may be sufficient for targeted mass drug administration because this diagnostic is predicted to identify a similar village population prevalence compared with that currently detected using polymerase chain reaction if treatment levels are high and screening is conducted during the dry season. Along with other factors, such as coverage, choice of drug, timing of the intervention, importation of infections, and seasonality, the sensitivity of the diagnostic can play a part in increasing the chance of interrupting transmission.


Asunto(s)
Pruebas Diagnósticas de Rutina , Malaria Falciparum/diagnóstico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/aislamiento & purificación , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Reacción en Cadena de la Polimerasa , Prevalencia , Reproducibilidad de los Resultados , Adulto Joven
6.
J Infect Dis ; 221(4): 598-607, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31437280

RESUMEN

BACKGROUND: Accurate quantification of female and male gametocytes and sex ratios in asymptomatic low-density malaria infections are important for assessing their transmission potential. Gametocytes often escape detection even by molecular methods, therefore ultralow gametocyte densities were quantified in large blood volumes. METHODS: Female and male gametocytes were quantified in 161 PCR-positive Plasmodium falciparum infections from a cross-sectional survey in Papua New Guinea. Ten-fold concentrated RNA from 800 µL blood was analyzed using female-specific pfs25 and male-specific pfmget or mssp qRT-PCR. Gametocyte sex ratios from qRT-PCR were compared with those from immunofluorescence assays (IFA). RESULTS: Gametocytes were identified in 58% (93/161) P. falciparum-positive individuals. Mean gametocyte densities were frequently below 1 female and 1 male gametocyte/µL by qRT-PCR. The mean proportion of males was 0.39 (95% confidence interval, 0.33-0.44) by pfs25/pfmget qRT-PCR; this correlated well with IFA results (Pearsons r2 = 0.91; P < .001). A Poisson model fitted to our data predicted 16% P. falciparum-positive individuals that are likely to transmit, assuming at least 1 female and 1 male gametocyte per 2.5 µL mosquito bloodmeal. CONCLUSIONS: Based on model estimates of female and male gametocytes per 2.5 µL blood, P. falciparum-positive individuals detected exclusively by ultrasensitive diagnostics are negligible for human-to-mosquito transmission.Estimating the transmission potential of ultralow-density malaria infections informs interventions. Almost all infections with ≥1 female and male gametocyte per 2.5 µL mosquito bloodmeal, and thus with highest likelihood of contributing to human-to-mosquito transmission, were detectable by standard molecular diagnostics.


Asunto(s)
Técnica del Anticuerpo Fluorescente Indirecta/métodos , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Oocitos/química , Plasmodium falciparum/química , Proteínas Protozoarias/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Espermatocitos/química , Biomarcadores/química , Estudios Transversales , Femenino , Humanos , Malaria Falciparum/parasitología , Masculino , Papúa Nueva Guinea/epidemiología , ARN Protozoario/sangre , ARN Protozoario/genética , Sensibilidad y Especificidad
7.
Opt Express ; 28(22): 32249-32265, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114916

RESUMEN

This article presents a non-classical imaging mechanism that produces a diffraction-limited and magnified ghost image of the internal structure of an object through the measurement of intensity fluctuation correlation formed by two-photon interference. In principle, the lensless X-ray ghost imaging mechanism may achieve a spatial resolution determined by the wavelength and the angular diameter of the X-ray source, ∼λ/Δθs, with possible reduction caused by additional optics. In addition, it has the ability to image select "slices" deep within an object, which can be used for constructing 3D view of its internal structure.

8.
Malar J ; 19(1): 332, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928227

RESUMEN

BACKGROUND: Malaria programmes in countries with low transmission levels require evidence to optimize deployment of current and new tools to reach elimination with limited resources. Recent pilots of elimination strategies in Ethiopia, Senegal, and Zambia produced evidence of their epidemiological impacts and costs. There is a need to generalize these findings to different epidemiological and health systems contexts. METHODS: Drawing on experience of implementing partners, operational documents and costing studies from these pilots, reference scenarios were defined for rapid reporting (RR), reactive case detection (RACD), mass drug administration (MDA), and in-door residual spraying (IRS). These generalized interventions from their trial implementation to one typical of programmatic delivery. In doing so, resource use due to interventions was isolated from research activities and was related to the pilot setting. Costing models developed around this reference implementation, standardized the scope of resources costed, the valuation of resource use, and the setting in which interventions were evaluated. Sensitivity analyses were used to inform generalizability of the estimates and model assumptions. RESULTS: Populated with local prices and resource use from the pilots, the models yielded an average annual economic cost per capita of $0.18 for RR, $0.75 for RACD, $4.28 for MDA (two rounds), and $1.79 for IRS (one round, 50% households). Intervention design and resource use at service delivery were key drivers of variation in costs of RR, MDA, and RACD. Scale was the most important parameter for IRS. Overall price level was a minor contributor, except for MDA where drugs accounted for 70% of the cost. The analyses showed that at implementation scales comparable to health facility catchment area, systematic correlations between model inputs characterizing implementation and setting produce large gradients in costs. CONCLUSIONS: Prospective costing models are powerful tools to explore resource and cost implications of policy alternatives. By formalizing translation of operational data into an estimate of intervention cost, these models provide the methodological infrastructure to strengthen capacity gap for economic evaluation in endemic countries. The value of this approach for decision-making is enhanced when primary cost data collection is designed to enable analysis of the efficiency of operational inputs in relation to features of the trial or the setting, thus facilitating transferability.


Asunto(s)
Erradicación de la Enfermedad/economía , Malaria/prevención & control , Proyectos Piloto , Etiopía , Humanos , Senegal , Zambia
9.
Malar J ; 19(1): 427, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228679

RESUMEN

BACKGROUND: Malaria was once a serious public health problem in China, with Plasmodium vivax the major species responsible for more than 90% of local transmission. Following significant integrated malaria control and elimination programmes, malaria burden declined, and since 2017 China has not recorded any indigenous case. To understand the historical malaria transmission patterns and epidemic characteristics in China and insights useful to guide P. vivax malaria control and elimination elsewhere, a retrospective study was carried out. METHODS: Historical data from a pilot study conducted in Guantang, Luyi in central China from 1971-1995, were digitized. The data included monthly numbers of reported cases, febrile cases, parasite carriage rates, the neonatal infection rate, and entomological data regarding Anopheles sinensis. RESULTS: Following 25 years of continuous integrated malaria control activities, malaria incidence in Guantang decreased from 4,333 cases per 10,000 in 1970 before integrated implementation to 0.23 cases per 10,000 in 1991, and no cases in 1992-1995. Some fluctuations in incidence were observed between 1977 and 1981. During the period parasite rates, antibody levels and the neonatal infection rate also decreased. The pattern of seasonality confirmed that P. vivax in Henan Province was primarily of the long incubation type (temperate) during non-transmission period. The findings retrospectively provide a scientific basis for the implementation of mass campaigns of liver stage hypnozoite clearance. Entomological studies indicated that An. sinensis was the only vector, and it preferred bovine to human hosts, predominantly biting and resting outdoors. Mosquito densities declined between 1971 and 1984. CONCLUSION: The integrated malaria control approach in Guantang effectively controlled malaria and achieved elimination. Analysis of the effectiveness of the programme can provide guidance to other regions or countries with similar ecological settings aiming to move from malaria control to elimination. There is a potential challenge in the maintenance of non-transmission status owing to imported cases and the long dormancy of liver stage hypnozoites.


Asunto(s)
Anopheles/parasitología , Erradicación de la Enfermedad , Brotes de Enfermedades , Malaria Vivax/epidemiología , Malaria Vivax/prevención & control , Plasmodium vivax/aislamiento & purificación , Animales , China/epidemiología , Incidencia , Estudios Retrospectivos
10.
Ecol Lett ; 22(10): 1680-1689, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31347244

RESUMEN

Predicting connectivity, or how landscapes alter movement, is essential for understanding the scope for species persistence with environmental change. Although it is well known that movement is risky, connectivity modelling often conflates behavioural responses to the matrix through which animals disperse with mortality risk. We derive new connectivity models using random walk theory, based on the concept of spatial absorbing Markov chains. These models decompose the role of matrix on movement behaviour and mortality risk, can incorporate species distribution to predict the amount of flow, and provide both short- and long-term analytical solutions for multiple connectivity metrics. We validate the framework using data on movement of an insect herbivore in 15 experimental landscapes. Our results demonstrate that disentangling the roles of movement behaviour and mortality risk is fundamental to accurately interpreting landscape connectivity, and that spatial absorbing Markov chains provide a generalisable and powerful framework with which to do so.


Asunto(s)
Distribución Animal , Ecosistema , Mortalidad , Movimiento , Animales , Cadenas de Markov , Análisis Espacio-Temporal
11.
Opt Express ; 27(23): 33282-33297, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31878400

RESUMEN

This article reports a study on a turbulence-free Young's double-slit interferometer. When the environmental turbulence blurs out the classic Young's double-slit interference completely, a two-photon interference pattern is still observable from the measurement of intensity or photon number fluctuation correlation. This two-photon interferometer always produces a turbulence-free interference pattern, when the double-slit interferometer is utilizing both first-order spatially incoherent light and spatially coherent light. This type of two-photon interferometer establishes new capabilities in optical observations and sensing measurements that require high sensitivity and stability.

12.
Malar J ; 18(1): 409, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31805947

RESUMEN

BACKGROUND: Field studies are evaluating if mass drug administration (MDA) might shorten the time to elimination of Plasmodium falciparum malaria, when vector control measures and reactive surveillance strategies are scaled-up. A concern with this strategy is that there may be resurgence of transmission following MDA. METHODS: A conceptual model was developed to classify possible outcomes of an initial period of MDA, followed by continuously implementing other interventions. The classification considered whether elimination or a new endemic stable state is achieved, and whether changes are rapid, transient, or gradual. These categories were informed by stability analyses of simple models of vector control, case management, and test-and-treat interventions. Individual-based stochastic models of malaria transmission (OpenMalaria) were then used to estimate the probability and likely rates of resurgence in realistic settings. Effects of concurrent interventions, including routine case management and test-and-treat strategies were investigated. RESULTS: Analysis of the conceptual models suggest resurgence will occur after MDA unless transmission potential is very low, or the post-MDA prevalence falls below a threshold, which depends on both transmission potential and on the induction of bistability. Importation rates are important only when this threshold is very low. In most OpenMalaria simulations the approximately stable state achieved at the end of the simulations was independent of inclusion of MDA and the final state was unaffected by importation of infections at plausible rates. Elimination occurred only with high effective coverage of case management, low initial prevalence, and high intensity test-and-treat. High coverage of case management but not by test-and-treat induced bistability. Where resurgence occurred, its rate depended mainly on transmission potential (not treatment rates). CONCLUSIONS: A short burst of high impact MDA is likely to be followed by resurgence. To avert resurgence, concomitant interventions need either to substantially reduce average transmission potential or to be differentially effective in averting or clearing infections at low prevalence. Case management at high effective coverage has this differential effect, and should suffice to avert resurgence caused by imported cases at plausible rates of importation. Once resurgence occurs, its rate depends mainly on transmission potential, not on treatment strategies.


Asunto(s)
Anopheles , Antimaláricos/administración & dosificación , Malaria/epidemiología , Administración Masiva de Medicamentos/estadística & datos numéricos , Control de Mosquitos , Animales , Incidencia , Malaria/parasitología , Malaria/prevención & control , Modelos Teóricos , Prevalencia
13.
Malar J ; 18(1): 441, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31870365

RESUMEN

BACKGROUND: A clear understanding of mosquito biology is fundamental to the control efforts of mosquito-borne diseases such as malaria. Mosquito mark-release-recapture (MMRR) experiments are a popular method of measuring the survival and dispersal of disease vectors; however, examples with African malaria vectors are limited. Ethical and technical difficulties involved in carrying out MMRR studies may have held back research in this area and, therefore, a device that marks mosquitoes as they emerge from breeding sites was developed and evaluated to overcome the problems of MMRR. METHODS: A modified self-marking unit that marks mosquitoes with fluorescent pigment as they emerge from their breeding site was developed based on a previous design for Culex mosquitoes. The self-marking unit was first evaluated under semi-field conditions with laboratory-reared Anopheles arabiensis to determine the marking success and impact on mosquito survival. Subsequently, a field evaluation of MMRR was conducted in Yombo village, Tanzania, to examine the feasibility of the system. RESULTS: During the semi-field evaluation the self-marking units successfully marked 86% of emerging mosquitoes and there was no effect of fluorescent marker on mosquito survival. The unit successfully marked wild male and female Anopheles gambiae sensu lato (s.l.) in sufficiently large numbers to justify its use in MMRR studies. The estimated daily survival probability of An. gambiae s.l. was 0.87 (95% CI 0.69-1.10) and mean dispersal distance was 579 m (95% CI 521-636 m). CONCLUSIONS: This study demonstrates the successful use of a self-marking device in an MMRR study with African malaria vectors. This method may be useful in investigating population structure and dispersal of mosquitoes for deployment and evaluation of future vector control tools, such as gene drive, and to better parameterize mathematical models.


Asunto(s)
Distribución Animal , Anopheles/fisiología , Entomología/métodos , Control de Mosquitos/métodos , Mosquitos Vectores/fisiología , Animales , Femenino , Longevidad , Malaria , Masculino , Tanzanía
14.
Malar J ; 18(1): 263, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31370901

RESUMEN

BACKGROUND: Most impact prediction of malaria vector control interventions has been based on African vectors. Anopheles albimanus, the main vector in Central America and the Caribbean, has higher intrinsic mortality, is more zoophilic and less likely to rest indoors. Therefore, relative impact among interventions may be different. Prioritizing interventions, in particular for eliminating Plasmodium falciparum from Haiti, should consider local vector characteristics. METHODS: Field bionomics data of An. albimanus from Hispaniola and intervention effect data from southern Mexico were used to parameterize mathematical malaria models. Indoor residual spraying (IRS), insecticide-treated nets (ITNs), and house-screening were analysed by inferring their impact on the vectorial capacity in a difference-equation model. Impact of larval source management (LSM) was assumed linear with coverage. Case management, mass drug administration and vaccination were evaluated by estimating their effects on transmission in a susceptible-infected-susceptible model. Analogous analyses were done for Anopheles gambiae parameterized with data from Tanzania, Benin and Nigeria. RESULTS: While LSM was equally effective against both vectors, impact of ITNs on transmission by An. albimanus was much lower than for An. gambiae. Assuming that people are outside until bedtime, this was similar for the impact of IRS with dichlorodiphenyltrichloroethane (DDT) or bendiocarb, and impact of IRS was less than that of ITNs. However, assuming people go inside when biting starts, IRS had more impact on An. albimanus than ITNs. While house-screening had less impact than ITNs or IRS on An. gambiae, it had more impact on An. albimanus than ITNs or IRS. The impacts of chemoprevention and chemotherapy were comparable in magnitude to those of strategies against An. albimanus. Chemo-prevention impact increased steeply as coverage approached 100%, whilst clinical-case management impact saturated because of remaining asymptomatic infections. CONCLUSIONS: House-screening and repellent IRS are potentially highly effective against An. albimanus if people are indoors during the evening. This is consistent with historical impacts of IRS with DDT, which can be largely attributed to excito-repellency. It also supports the idea that housing improvements have played a critical role in malaria control in North America. For elimination planning, impact estimates need to be combined with feasibility and cost-analysis.


Asunto(s)
Anopheles , Control de Enfermedades Transmisibles/métodos , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores , África , Animales , Anopheles/efectos de los fármacos , Anopheles/crecimiento & desarrollo , Manejo de Caso/estadística & datos numéricos , Haití , Humanos , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Vacunas contra la Malaria/uso terapéutico , Administración Masiva de Medicamentos/estadística & datos numéricos , Modelos Teóricos , Especificidad de la Especie , Vacunación/estadística & datos numéricos
15.
Malar J ; 18(1): 266, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375094

RESUMEN

BACKGROUND: Reactive case detection (RCD) is an integral part of many malaria control and elimination programmes and can be conceived of as a way of gradually decreasing transmission. However, it is unclear under what circumstances RCD may have a substantial impact on prevalence, how likely it is to lead to local elimination, or how effective it needs to be to prevent reintroduction after transmission has been interrupted. METHODS: Analyses and simulations of a discrete time compartmental susceptible-infectious-susceptible (SIS) model were used to understand the mechanisms of how RCD changes transmission dynamics and estimate the impact of RCD programmes in a range of settings with varying patterns of transmission potential and programme characteristics. Prevalence survey data from recent studies in Zambia were used to capture the effects of spatial clustering of patent infections. RESULTS: RCD proved most effective at low prevalence. Increasing the number of index cases followed was more important than increasing the number of neighbours tested per index case. Elimination was achieved only in simulations of situations with very low transmission intensity and following many index cases. However, RCD appears to be helpful in maintaining the disease-free state after achieving malaria elimination (through other interventions). CONCLUSION: RCD alone can eliminate malaria in only a very limited range of settings, where transmission potential is very low, and improving the coverage of RCD has little effect on this range. In other settings, it is likely to reduce disease burden. RCD may also help maintain the disease-free state in the face of imported infections. Prevalence survey data can be used to estimate a targeting ratio (the ratio of prevalence found through RCD to that in the general population) which is an important determinant of the effect of RCD.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Erradicación de la Enfermedad/métodos , Malaria/prevención & control , Humanos , Malaria/epidemiología , Modelos Teóricos , Prevalencia , Análisis Espacial , Zambia/epidemiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-30038039

RESUMEN

Amodiaquine plus artesunate is the recommended antimalarial treatment in many countries where malaria is endemic. However, pediatric doses are largely based on a linear extrapolation from adult doses. We pooled data from previously published studies on the pharmacokinetics of amodiaquine, to optimize the dose across all age groups. Adults and children with uncomplicated malaria received daily weight-based doses of amodiaquine or artesunate-amodiaquine over 3 days. Plasma concentration-time profiles for both the parent drug and the metabolite were characterized using nonlinear mixed-effects modeling. Amodiaquine pharmacokinetics were adequately described by a two-compartment disposition model, with first-order elimination leading to the formation of desethylamodiaquine, which was best described by a three-compartment disposition model. Body size and age were the main covariates affecting amodiaquine clearance. After adjusting for the effect of weight, clearance rates for amodiaquine and desethylamodiaquine reached 50% of adult maturation at 2.8 months (95% confidence interval [CI], 1.5 to 3.7 months) and 3.9 months (95% CI, 2.6 to 5.3 months) after birth, assuming that the baby was born at term. Bioavailability was 22.4% (95% CI, 15.6 to 31.9%) lower at the start of treatment than during convalescence, which suggests a malaria disease effect. Neither the drug formulation nor the hemoglobin concentration had an effect on any pharmacokinetic parameters. Results from simulations showed that current manufacturer dosing recommendations resulted in low desethylamodiaquine exposure in patients weighing 8 kg, 15 to 17 kg, 33 to 35 kg, and >62 kg compared to that in a typical 50-kg patient. We propose possible optimized dosing regimens to achieve similar drug exposures among all age groups, which require further validation.


Asunto(s)
Amodiaquina/farmacocinética , Antimaláricos/farmacocinética , Adolescente , Adulto , Amodiaquina/administración & dosificación , Antimaláricos/administración & dosificación , Niño , Preescolar , Esquema de Medicación , Femenino , Humanos , Lactante , Malaria , Masculino , Persona de Mediana Edad , Pediatría , Adulto Joven
17.
Phys Rev Lett ; 120(6): 063606, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29481250

RESUMEN

Optical turbulence can be detrimental for optical observations. For instance, atmospheric turbulence may reduce the visibility or completely blur out the interference produced by an interferometer in open air. However, a simple two-photon interference theory based on Einstein's granularity picture of light makes a turbulence-free interferometer possible; i.e., any refraction index, length, or phase variations along the optical paths of the interferometer do not have any effect on its interference. Applying this mechanism, the reported experiment demonstrates a two-photon double-slit interference that is insensitive to atmospheric turbulence. The turbulence-free mechanism and especially the turbulence-free interferometer would be helpful in optical observations that require high sensitivity and stability such as for gravitational-wave detection.

18.
J Theor Biol ; 455: 118-130, 2018 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-30006002

RESUMEN

Malaria and some other tropical diseases are currently targeted for elimination and eventually eradication. Since resources are limited, prioritisation of countries or areas for elimination is often necessary. However, this prioritisation is frequently conducted in an ad hoc manner. Lower transmission areas are usually targeted for elimination first, but for some areas this necessitates long and potentially expensive surveillance programs while transmission is eliminated from neighbouring higher transmission areas. We use a mathematical model to compare the implications of prioritisation choices in reducing overall burden and costs. We show that when the duration of the elimination program is independent of the transmission potential, burden is always reduced most by targeting high transmission areas first, but to reduce costs the optimal ordering depends on the actual transmission levels. In general, when overall transmission potential is low and the surveillance cost per secondary case compared to the cost per imported case is low, targeting the higher transmission area for elimination first is favoured.


Asunto(s)
Costo de Enfermedad , Erradicación de la Enfermedad/economía , Malaria , Modelos Económicos , Costos y Análisis de Costo , Humanos , Malaria/economía , Malaria/epidemiología , Malaria/prevención & control , Malaria/transmisión
19.
Lancet ; 388(10050): 1193-201, 2016 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-27520594

RESUMEN

BACKGROUND: Odour baits can attract host-seeking Anopheles mosquitoes indoors and outdoors. We assessed the effects of mass deployment of odour-baited traps on malaria transmission and disease burden. METHODS: We installed solar-powered odour-baited mosquito trapping systems (SMoTS) to households on Rusinga Island, Lake Victoria, western Kenya (mean population 24 879), in a stepped-wedge cluster-randomised trial. All residents in the completed health and demographic surveillance system were eligible to participate. We used the travelling salesman algorithm to assign all households to a cluster (50 or 51 geographically contiguous households); nine contiguous clusters formed a metacluster. Initially, no cluster had SMoTS (non-intervened). During the course of the intervention roll-out SMoTS were gradually installed cluster by cluster until all clusters had SMoTS installed (intervened). We generated 27 cluster randomisations, with the cluster as unit of randomisation, to establish the order to install the traps in the clusters until all had a SMoTS installed. Field workers and participants were not masked to group allocation. The primary outcome of clinical malaria was monitored through repeated household visits covering the entire population, once before roll-out (baseline) and five times throughout the 2-year roll-out. We measured clinical malaria as fever plus a positive result with a rapid diagnostic test. The SolarMal project was registered on the Dutch Trial Register (NTR 3496). FINDINGS: We enrolled 34 041 participants between April 25, 2012, and March 23, 2015, to 81 clusters and nine metaclusters. 4358 households were provided with SMoTS during roll-out between June 3, 2013, and May 16, 2015. 23 clinical malaria episodes were recorded in intervened clusters and 33 episodes in non-intervened clusters (adjusted effectiveness 40·8% [95% CI -172·8 to 87·1], p=0·5) during the roll-out. Malaria prevalence measured by rapid diagnostic test was 29·8% (95% CI 20·9-38·0) lower in SMoTS clusters (prevalence 23·7%; 1552 of 6550 people) than in non-intervened clusters (prevalence 34·5%; 2002 of 5795 people). INTERPRETATION: The unexpectedly low clinical incidence of malaria during roll-out led to an imprecise estimate of effectiveness from the clinical incidence data. The substantial effect on malaria prevalence is explained by reduction in densities of Anopheles funestus. Odour-baited traps might be an effective malaria intervention. FUNDING: COmON Foundation.


Asunto(s)
Anopheles , Costo de Enfermedad , Mosquiteros Tratados con Insecticida , Malaria/epidemiología , Malaria/prevención & control , Control de Mosquitos/métodos , Odorantes , Animales , Medicina Basada en la Evidencia , Femenino , Humanos , Incidencia , Insectos Vectores , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Kenia , Malaria/diagnóstico , Malaria/transmisión , Masculino , Prevalencia , Proyectos de Investigación , Resultado del Tratamiento
20.
Lancet ; 387(10016): 367-375, 2016 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-26549466

RESUMEN

BACKGROUND: The phase 3 trial of the RTS,S/AS01 malaria vaccine candidate showed modest efficacy of the vaccine against Plasmodium falciparum malaria, but was not powered to assess mortality endpoints. Impact projections and cost-effectiveness estimates for longer timeframes than the trial follow-up and across a range of settings are needed to inform policy recommendations. We aimed to assess the public health impact and cost-effectiveness of routine use of the RTS,S/AS01 vaccine in African settings. METHODS: We compared four malaria transmission models and their predictions to assess vaccine cost-effectiveness and impact. We used trial data for follow-up of 32 months or longer to parameterise vaccine protection in the group aged 5-17 months. Estimates of cases, deaths, and disability-adjusted life-years (DALYs) averted were calculated over a 15 year time horizon for a range of levels of Plasmodium falciparum parasite prevalence in 2-10 year olds (PfPR2-10; range 3-65%). We considered two vaccine schedules: three doses at ages 6, 7·5, and 9 months (three-dose schedule, 90% coverage) and including a fourth dose at age 27 months (four-dose schedule, 72% coverage). We estimated cost-effectiveness in the presence of existing malaria interventions for vaccine prices of US$2-10 per dose. FINDINGS: In regions with a PfPR2-10 of 10-65%, RTS,S/AS01 is predicted to avert a median of 93,940 (range 20,490-126,540) clinical cases and 394 (127-708) deaths for the three-dose schedule, or 116,480 (31,450-160,410) clinical cases and 484 (189-859) deaths for the four-dose schedule, per 100,000 fully vaccinated children. A positive impact is also predicted at a PfPR2-10 of 5-10%, but there is little impact at a prevalence of lower than 3%. At $5 per dose and a PfPR2-10 of 10-65%, we estimated a median incremental cost-effectiveness ratio compared with current interventions of $30 (range 18-211) per clinical case averted and $80 (44-279) per DALY averted for the three-dose schedule, and of $25 (16-222) and $87 (48-244), respectively, for the four-dose schedule. Higher ICERs were estimated at low PfPR2-10 levels. INTERPRETATION: We predict a significant public health impact and high cost-effectiveness of the RTS,S/AS01 vaccine across a wide range of settings. Decisions about implementation will need to consider levels of malaria burden, the cost-effectiveness and coverage of other malaria interventions, health priorities, financing, and the capacity of the health system to deliver the vaccine. FUNDING: PATH Malaria Vaccine Initiative; Bill & Melinda Gates Foundation; Global Good Fund; Medical Research Council; UK Department for International Development; GAVI, the Vaccine Alliance; WHO.


Asunto(s)
Vacunas contra la Malaria/economía , Malaria Falciparum/prevención & control , Modelos Teóricos , Salud Pública , África/epidemiología , Ensayos Clínicos Fase III como Asunto , Análisis Costo-Beneficio , Humanos , Esquemas de Inmunización , Lactante , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/economía , Malaria Falciparum/epidemiología , Estudios Multicéntricos como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA