Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(8): e2202388120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36780524

RESUMEN

Climate change is radically altering coral reef ecosystems, mainly through increasingly frequent and severe bleaching events. Yet, some reefs have exhibited higher thermal tolerance after bleaching severely the first time. To understand changes in thermal tolerance in the eastern tropical Pacific (ETP), we compiled four decades of temperature, coral cover, coral bleaching, and mortality data, including three mass bleaching events during the 1982 to 1983, 1997 to 1998 and 2015 to 2016 El Niño heatwaves. Higher heat resistance in later bleaching events was detected in the dominant framework-building genus, Pocillopora, while other coral taxa exhibited similar susceptibility across events. Genetic analyses of Pocillopora spp. colonies and their algal symbionts (2014 to 2016) revealed that one of two Pocillopora lineages present in the region (Pocillopora "type 1") increased its association with thermotolerant algal symbionts (Durusdinium glynnii) during the 2015 to 2016 heat stress event. This lineage experienced lower bleaching and mortality compared with Pocillopora "type 3", which did not acquire D. glynnii. Under projected thermal stress, ETP reefs may be able to preserve high coral cover through the 2060s or later, mainly composed of Pocillopora colonies that associate with D. glynnii. However, although the low-diversity, high-cover reefs of the ETP could illustrate a potential functional state for some future reefs, this state may only be temporary unless global greenhouse gas emissions and resultant global warming are curtailed.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Ecosistema , Respuesta al Choque Térmico , Océanos y Mares
2.
Glob Chang Biol ; 22(8): 2756-65, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26648385

RESUMEN

Deeper coral reefs experience reduced temperatures and light and are often shielded from localized anthropogenic stressors such as pollution and fishing. The deep reef refugia hypothesis posits that light-dependent stony coral species at deeper depths are buffered from thermal stress and will avoid bleaching-related mass mortalities caused by increasing sea surface temperatures under climate change. This hypothesis has not been tested because data collection on deeper coral reefs is difficult. Here we show that deeper (mesophotic) reefs, 30-75 m depth, in the Caribbean are not refugia because they have lower bleaching threshold temperatures than shallow reefs. Over two thermal stress events, mesophotic reef bleaching was driven by a bleaching threshold that declines 0.26 °C every +10 m depth. Thus, the main premise of the deep reef refugia hypothesis that cooler environments are protective is incorrect; any increase in temperatures above the local mean warmest conditions can lead to thermal stress and bleaching. Thus, relatively cooler temperatures can no longer be considered a de facto refugium for corals and it is likely that many deeper coral reefs are as vulnerable to climate change as shallow water reefs.


Asunto(s)
Cambio Climático , Arrecifes de Coral , Refugio de Fauna , Animales , Antozoos , Región del Caribe , Ecosistema
3.
J Chem Phys ; 143(14): 144901, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26472392

RESUMEN

We map out the solid-state morphologies formed by model soft-pearl-necklace polymers as a function of chain stiffness, spanning the range from fully flexible to rodlike chains. The ratio of Kuhn length to bead diameter (lK/r0) increases monotonically with increasing bending stiffness kb and yields a one-parameter model that relates chain shape to bulk morphology. In the flexible limit, monomers occupy the sites of close-packed crystallites while chains retain random-walk-like order. In the rodlike limit, nematic chain ordering typical of lamellar precursors coexists with close-packing. At intermediate values of bending stiffness, the competition between random-walk-like and nematic chain ordering produces glass-formation; the range of kb over which this occurs increases with the thermal cooling rate |T| implemented in our molecular dynamics simulations. Finally, values of kb between the glass-forming and rodlike ranges produce complex ordered phases such as close-packed spirals. Our results should provide a useful initial step in a coarse-grained modeling approach to systematically determining the effect of chain stiffness on the crystallization-vs-glass-formation competition in both synthetic and colloidal polymers.

4.
Ecology ; 95(6): 1663-73, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25039230

RESUMEN

Species intolerant of changing climate might avoid extinction within refugia buffered from extreme conditions. Refugia have been observed in the fossil record but are not well documented or understood on ecological time scales. Using a 37-year record from the eastern Pacific across the two most severe El Niño events on record (1982-1983 and 1997 1998) we show how an exceptionally thermally sensitive reef-building hydrocoral, Millepora intricata, twice survived catastrophic bleaching in a deeper-water refuge (> 11 m depth). During both events, M. intricata was extirpated across its range in shallow water, but showed recovery within several years, while two other hydrocorals without deep-water populations were driven to regional extinction. Evidence from the subfossil record in the same area showed shallow-water persistence of abundant M. intricata populations from 5000 years ago, through severe El Niño-Southern Oscillation cycles, suggesting a potential depth refugium on a millennial timescale. Our data confirm the deep refuge hypothesis for corals under thermal stress.


Asunto(s)
Antozoos , Arrecifes de Coral , Extinción Biológica , Animales , Clorofila , Conservación de los Recursos Naturales , Demografía , Monitoreo del Ambiente , Oxígeno , Océano Pacífico , Temperatura , Factores de Tiempo
5.
Adv Mar Biol ; 69: 129-52, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25358299

RESUMEN

The marine managed areas (MMAs) of the U.S. Caribbean are summarized and specific data-rich cases are examined to determine their impact upon fisheries management in the region. In this region, the productivity and connectivity of benthic habitats such as mangroves, seagrass and coral reefs is essential for many species targeted by fisheries. A minority of the 39 MMAs covering over 4000km(2) serve any detectable management or conservation function due to deficiencies in the design, objectives, compliance or enforcement. Fifty percent of the area within MMA boundaries had no-take regulations in the U.S. Virgin Islands, while Puerto Rico only had 3%. Six case studies are compared and contrasted to better understand the potential of these MMAs for fisheries management. Signs of success were associated with including sufficient areas of essential fish habitat (nursery, spawning and migration corridors), year-round no-take regulations, enforcement and isolation. These criteria have been identified as important in the conservation of marine resources, but little has been done to modify the way MMAs are designated and implemented in the region. Site-specific monitoring to measure the effects of these MMAs is needed to demonstrate the benefits to fisheries and gain local support for a greater use as a fisheries management tool.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Ecosistema , Puerto Rico , Islas Virgenes de los Estados Unidos
6.
Trends Ecol Evol ; 39(6): 585-598, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38413283

RESUMEN

The function and stability of mesophotic coral ecosystems (MCEs) have been extensively studied in recent years. These deep reefs are characterized by local physical processes, particularly the steep gradient in irradiance with increasing depth, and their impact on trophic resources. Mesophotic reefs exhibit distinct zonation patterns that segregate shallow reef biodiversity from ecologically unique deeper communities of endemic species. While mesophotic reefs are hypothesized as relatively stable refuges from anthropogenic stressors and a potential seed bank for degraded shallow reefs, these are site-specific features, if they occur at all. Mesophotic reefs are now known to be susceptible to many of the same stressors that are degrading shallow reefs, suggesting that they require their own specific conservation and management strategies.


Asunto(s)
Antozoos , Biodiversidad , Conservación de los Recursos Naturales , Arrecifes de Coral , Animales , Antozoos/fisiología , Ecosistema
7.
Harmful Algae ; 131: 102561, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38212086

RESUMEN

Ciguatera poisoning (CP) is the most common form of phycotoxin-borne seafood poisoning globally, affecting thousands of people on an annual basis. It most commonly occurs in residential fish of coral reefs, which consume toxin-laden algae, detritus, and reef animals. The class of toxins that cause CP, ciguatoxins (CTXs), originate in benthic, epiphytic dinoflagellates of the genera, Gambierdiscus and Fukuyoa, which are consumed by herbivores and detritivores that facilitate food web transfer. A number of factors have hindered adequate environmental monitoring and seafood surveillance for ciguatera including the low concentrations in which the toxins are found in seafood causing illness (sub-ppb), a lack of knowledge on the toxicity equivalence of other CTXs and contribution of other benthic algal toxins to the disease, and the limited availability of quantified toxin standards and reference materials. While progress has been made on the identification of the dinoflagellate taxa and toxins responsible for CP, more effort is needed to better understand the dynamics of toxin transfer into reef food webs in order to implement a practical monitoring program for CP. Here, we present a conceptual model that utilizes empirical field data (temperature, Gambierdiscus cell densities, macrophyte cover) in concert with other published studies (grazing rates and preference) to produce modeling outputs that suggest approaches that may be beneficial to developing monitoring programs: 1) targeting specific macrophytes for Gambierdiscus and toxin measurements to monitor toxin levels at the base of the food web (i.e., toxin loading); and 2) adjusting these targets across sites and over seasons. Coupling this approach with other methodologies being incorporated into monitoring programs (artificial substrates; FISH probes; toxin screening) may provide an "early warning" system to develop strategic responses to potential CP flare ups in the future.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Humanos , Animales , Ciguatoxinas/toxicidad , Región del Caribe , Monitoreo del Ambiente/métodos
8.
Harmful Algae ; 131: 102562, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38212087

RESUMEN

Ciguatera Poisoning (CP) is a widespread and complex poisoning syndrome caused by the consumption of fish or invertebrates contaminated with a suite of potent neurotoxins collectively known as ciguatoxins (CTXs), which are produced by certain benthic dinoflagellates species in the genera Gambierdiscus and Fukuyoa. Due to the complex nature of this HAB problem, along with a poor understanding of toxin production and entry in the coral reef food web, the development of monitoring, management, and forecasting approaches for CP has lagged behind those available for other HAB syndromes. Over the past two decades, renewed research on the taxonomy, physiology, and toxicology of CP-causing dinoflagellates has advanced our understanding of the species diversity that exists within these genera, including identification of highly toxic species (so called "superbugs") that likely contribute disproportionately to ciguatoxins entering coral reef food webs. The recent development of approaches for molecular analysis of field samples now provide the means to investigate in situ community composition, enabling characterization of spatio-temporal species dynamics, linkages between toxic species abundance and toxin flux, and the risk of ciguatoxin prevalence in fish. In this study we used species-specific fluorescent in situ hybridization (FISH) probes to investigate Gambierdiscus species composition and dynamics in St. Thomas (USVI) and the Florida Keys (USA) over multiple years (2018-2020). Within each location, samples were collected seasonally from several sites comprising varying depths, habitats, and algal substrates to characterize community structure over small spatial scales and across different host macrophytes. This approach enabled the quantitative determination of communities over spatiotemporal gradients, as well as the selective enumeration of species known to exhibit high toxicity, such as Gambierdiscus silvae. The investigation found differing community structure between St. Thomas and Florida Keys sites, driven in part by differences in the distribution of toxin-producing species G. silvae and G. belizeanus, which were present throughout sampling sites in St. Thomas but scarce or absent in the Florida Keys. This finding is significant given the high toxicity of G. silvae, and may help explain differences in fish toxicity and CP incidence between St. Thomas and Florida. Intrasite comparisons along a depth gradient found higher concentrations of Gambierdiscus spp. at deeper locations. Among the macrophytes sampled, Dictyota may be a likely vector for toxin transfer based on their widespread distribution, apparent colonization by G. silvae, and palatability to at least some herbivore grazers. Given its ubiquity throughout both study regions and sites, this taxa may also serve as a refuge, accumulating high concentrations of Gambierdiscus and other benthic dinoflagellates, which in turn can serve as source populations for highly palatable and ephemeral habitats nearby, such as turf algae. These studies further demonstrate the successful application of FISH probes in examining biogeographic structuring of Gambierdiscus communities, targeting individual toxin-producing species, and characterizing species-level dynamics that are needed to describe and model ecological drivers of species abundance and toxicity.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Ciguatoxinas/toxicidad , Florida , Hibridación Fluorescente in Situ , Islas Virgenes de los Estados Unidos
9.
Mar Drugs ; 12(1): 88-97, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24378919

RESUMEN

Invasive Indo-Pacific lionfish (Pterois volitans) have rapidly expanded in the Western Atlantic over the past decade and have had a significant negative impact on reef fish biodiversity, habitat, and community structure, with lionfish out-competing native predators for resources. In an effort to reduce this population explosion, lionfish have been promoted for human consumption in the greater Caribbean region. This study examined whether the geographical expansion of the lionfish into a known ciguatera-endemic region can pose a human health threat for ciguatera fish poisoning (CFP). More than 180 lionfish were collected from waters surrounding the US Virgin Islands throughout 2010 and 2011. Ciguatoxin testing included an in vitro neuroblastoma cytotoxicity assay for composite toxicity assessment of sodium-channel toxins combined with confirmatory liquid chromatography tandem mass spectrometry. A 12% prevalence rate of ciguatoxic lionfish exceeding the FDA guidance level of 0.1 µg/kg C-CTX-1 equivalents was identified in fish from the U.S. Virgin Islands, highlighting a potential consumption risk in this region. This study presents the first evidence that the invasive lionfish, pose a direct human health risk for CFP and highlights the need for awareness and research on this food safety hazard in known endemic areas.


Asunto(s)
Intoxicación por Ciguatera/epidemiología , Peces/fisiología , Biología Marina , Alimentos Marinos/efectos adversos , Animales , Océano Atlántico , Biodiversidad , Región del Caribe , Cromatografía Líquida de Alta Presión , Ciguatoxinas/química , Ecosistema , Inocuidad de los Alimentos , Humanos , Indicadores y Reactivos , Toxinas Marinas/toxicidad , Carne/análisis , Carne/toxicidad , Neuroblastoma/patología , Conducta Predatoria , Bloqueadores de los Canales de Sodio/toxicidad , Espectrometría de Masas en Tándem , Pruebas de Toxicidad , Islas Virgenes de los Estados Unidos
10.
G3 (Bethesda) ; 13(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36718551

RESUMEN

Limited dispersal of individuals between generations results in isolation by distance, in which individuals further apart in space tend to be less related. Classic models of isolation by distance assume that dispersal distances are drawn from a thin-tailed distribution and predict that the proportion of the genome that is identical by descent between a pair of individuals should decrease exponentially with the spatial separation between them. However, in many natural populations, individuals occasionally disperse over very long distances. In this work, we use mathematical analysis and coalescent simulations to study the effect of long-range (power-law) dispersal on patterns of isolation by distance. We find that it leads to power-law decay of identity-by-descent at large distances with the same exponent as dispersal. We also find that broad power-law dispersal produces another, shallow power-law decay of identity-by-descent at short distances. These results suggest that the distribution of long-range dispersal events could be estimated from sequencing large population samples taken from a wide range of spatial scales.

11.
Mar Environ Res ; 188: 105952, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37068436

RESUMEN

Global evidence of phase shifts to alternate community types is of particular concern because these new communities can provide fundamentally different and often novel ecosystem functions and services compared to the original community. Shifts of a diverse range of marine communities to dominance by green macroalgal mats have occurred worldwide, making it critical to understand their emerging functions and roles. We observed a green algal mat on two reefs in the Eastern Tropical Pacific, with one persisting for >10 years on a reef with stable herbivore populations and no known sources of anthropogenic nutrients. These mats supported a more speciose macroalgal community with fewer taxa present in the adjacent coral community and facilitated growth of an associated understory macroalgal species by reducing herbivory pressure and possibly enhancing nutrient supplies within the mat community state. These results demonstrate a weakening in the processes controlling reef community structure as a result of the shift in composition associated with the macroalgal mat, creating a positive feedback supporting mat persistence. These novel ecosystem functions generated by this alternate community state illustrate the importance of further research on community shifts, which will become increasingly common in the Anthropocene.


Asunto(s)
Antozoos , Algas Marinas , Animales , Arrecifes de Coral , Ecosistema , Herbivoria , Dinámica Poblacional , Algas Marinas/química
12.
Biofilm ; 6: 100142, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37484784

RESUMEN

Implementation of negative pressure wound therapy (NPWT) as a standard of care has proven efficacious in reducing both the healing time and likelihood of nosocomial infection among pressure ulcers and traumatic, combat-related injuries. However, current formulations may not target or dramatically reduce bacterial biofilm burden following therapy. The purpose of this study was to determine the antibiofilm efficacy of an open-cell polyurethane (PU) foam (V.A.C.® Granufoam™) loaded with a first-in-class compound (CZ-01179) as the active release agent integrated via lyophilized hydrogel scaffolding. An ex vivo porcine excision wound model was designed to perform antibiofilm efficacy testing in the presence of NPWT. PU foam samples loaded with a 10.0% w/w formulation of CZ-01179 and 0.5% hyaluronic acid were prepared and tested against current standards of care: V.A.C.® Granufoam Silver™ and V.A.C.® Granufoam™. We observed statistically significant reduction of methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii biofilms with the CZ-01179 antibiofilm foam in comparison to current standard of care foams. These findings motivate further development of an antibiofilm PU foam loaded with CZ-01179.

13.
Sci Total Environ ; 900: 165637, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37490944

RESUMEN

Anthropogenic marine debris and invasive species are pervasive in the ocean. However, research on the mechanisms and dynamics controlling their distribution in marine systems (e.g.; by floating debris acting as vectors for invasive species) is limited. Applying a numerical modeling approach, we demonstrate that rafting invasive corals (Tubastraea spp.) can be transported over long distances and reach important tropical receptor regions. In <180 days, buoyant debris can cover distances between 264 and 7170 km moving from the Brazilian semiarid coast to the Amazon coast and reaching eight regions in the Wider Caribbean (mainly the Eastern Caribbean and Greater Antilles). Analyzing 48 simulated scenarios (4 years × 3 depths × 4 months), we demonstrate that in ~86 % of the scenarios the particles are stranded in the Caribbean and in ~71 % they end up in the Amazon coast. Our results showed litter floating trajectories at 0-10 m water depth, transported every year to the Caribbean province. However, in August this transport is frequently blocked by the retroflection of the North Brazil Current adjacent to the Amazon River estuarine plume. Our results indicate routes for fast and long-distance transport of litter-rafting invasive species. We hypothesized a high risk of bioinvasion on important marine ecosystems (e.g., coral reefs) likely becoming increasingly threatened by these invasive species and debris. This highlights the imperative need for an ocean governance shift in prevention, control, and eradication, not only focused on local actions to prevent the spread of invasive species but also a broad international action to decrease and mitigate marine debris pollution globally.


Asunto(s)
Antozoos , Animales , Ecosistema , Arrecifes de Coral , Especies Introducidas , Región del Caribe , Plásticos
14.
Nat Commun ; 14(1): 2915, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217477

RESUMEN

Stony coral tissue loss disease (SCTLD), one of the most pervasive and virulent coral diseases on record, affects over 22 species of reef-building coral and is decimating reefs throughout the Caribbean. To understand how different coral species and their algal symbionts (family Symbiodiniaceae) respond to this disease, we examine the gene expression profiles of colonies of five species of coral from a SCTLD transmission experiment. The included species vary in their purported susceptibilities to SCTLD, and we use this to inform gene expression analyses of both the coral animal and their Symbiodiniaceae. We identify orthologous coral genes exhibiting lineage-specific differences in expression that correlate to disease susceptibility, as well as genes that are differentially expressed in all coral species in response to SCTLD infection. We find that SCTLD infection induces increased expression of rab7, an established marker of in situ degradation of dysfunctional Symbiodiniaceae, in all coral species accompanied by genus-level shifts in Symbiodiniaceae photosystem and metabolism gene expression. Overall, our results indicate that SCTLD infection induces symbiophagy across coral species and that the severity of disease is influenced by Symbiodiniaceae identity.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/fisiología , Arrecifes de Coral , Dinoflagelados/genética , Transcriptoma , Perfilación de la Expresión Génica , Simbiosis/genética
15.
ISME Commun ; 2(1): 46, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37938315

RESUMEN

Stony coral tissue loss disease (SCTLD) is a widespread and deadly disease that affects nearly half of Caribbean coral species. To understand the microbial community response to this disease, we performed a disease transmission experiment on US Virgin Island (USVI) corals, exposing six species of coral with varying susceptibility to SCTLD. The microbial community of the surface mucus and tissue layers were examined separately using a small subunit ribosomal RNA gene-based sequencing approach, and data were analyzed to identify microbial community shifts following disease acquisition, potential causative pathogens, as well as compare microbiota composition to field-based corals from the USVI and Florida outbreaks. While all species displayed similar microbiome composition with disease acquisition, microbiome similarity patterns differed by both species and mucus or tissue microhabitat. Further, disease exposed but not lesioned corals harbored a mucus microbial community similar to those showing disease signs, suggesting that mucus may serve as an early warning detection for the onset of SCTLD. Like other SCTLD studies in Florida, Rhodobacteraceae, Arcobacteraceae, Desulfovibrionaceae, Peptostreptococcaceae, Fusibacter, Marinifilaceae, and Vibrionaceae dominated diseased corals. This study demonstrates the differential response of the mucus and tissue microorganisms to SCTLD and suggests that mucus microorganisms may be diagnostic for early disease exposure.

16.
Sci Rep ; 12(1): 17359, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253396

RESUMEN

Large gaps in reef distribution may hinder the dispersal of marine organisms, interrupting processes vital to the maintenance of biodiversity. Here we show the presence and location of extensive reef habitats on the continental shelf between the Amazon Reef System (ARS) and the Eastern Brazilian Reef System (ERS), two reef complexes off eastern South America. Formations located 20-50 m deep include both biogenic and geogenic structures. The presence of diverse reef assemblages suggests the widespread occurrence of rocky substrates below 50 m. These habitats represent an expansion of both the ARS and ERS and the closure of the only remaining large-scale gap (~ 1000 km) among West Atlantic reef environments. This indicates that the SW Atlantic harbors a single, yet heterogeneous, reef system that stretches for about 4000 km, and thus, represents one of the largest semi-continuous tropical marine ecosystems in the world.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Organismos Acuáticos , Brasil , Arrecifes de Coral , Peces
17.
Harmful Algae ; 103: 101998, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33980438

RESUMEN

Anchored mesh screens have been suggested as a standardized approach to monitor the cell abundances of epiphytic dinoflagellates in benthic habitats, including toxigenic members of the Gambierdiscus genus responsible for ciguatera poisoning (CP). Here we deployed screens for 24h at eight sites in the Florida Keys and St. Thomas (US Virgin Islands) to evaluate their performance relative to the traditional method of assessing Gambierdiscus abundance in which cell counts are normalized to wet weight of host algae. The 30-month study (April 2013 - August 2015) involved monthly sampling at sites where screens were suspended at near-bottom locations for a 24h period and retrieved, with concurrent collections of macrophytes; including Halimeda, Laurencia, and Thalassia in the Florida Keys, and Dictyota in both regions. Gambierdiscus cells were identified and enumerated in the screen and macrophyte samples, and several regression techniques were evaluated (linear regression using untransformed and log-transformed data; negative binomial distribution (NBD) regression) to determine how well the screen-derived data could estimate algal cell concentrations on the host algae. In all cases, the NBD models performed the best based on Akaike Information Criteria values, although 38% of the regressions were not statistically-significant, including all of the St. Thomas sites. The r2 values were all < 0.75 and averaged 0.36, indicating relatively poor fit of the screen data. False negative results (regression models underestimating actual cell abundances) were common occurrences, ranging from 5 to 74% of the scenarios tested. In summary, these results indicate that 24h screen deployments do not appear to be consistent in all situations. Caution is therefore needed when considering 24h screens as a standardized monitoring approach for quantifying Gambierdiscus population dynamics across geography and ecosystems. Furthermore, neutral (artificial) substrates may not adequately capture either the host preference or palatability that likely influence the initial vector of toxin incorporation in the food web via herbivory on these macrophytes.


Asunto(s)
Intoxicación por Ciguatera , Dinoflagelados , Ecosistema , Florida , Islas Virgenes de los Estados Unidos
18.
Ann Med Surg (Lond) ; 63: 102176, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33732449

RESUMEN

BACKGROUND: Understanding trends in surgical volumes can help Ambulatory Surgery Centers (ASCs) prevent clinician burnout and provide adequate staffing while maintaining the quality of patient care throughout the year. Health insurance deductibles reset in January each year and may contribute to an annual rhythm where the levee of year-end deductibles is breached in the last few months of every year, resulting in a flood of cases and several accompanying challenges. This study aims to identify and analyze monthly and yearly surgical volume patterns in ASCs and explore a relationship with the deductible reset. METHODS: De-identified, aggregate visit data for 2016-2019 were obtained retrospectively from 14 ambulatory surgery centers within the same benchmarking consortium in the Southeast. The ASCs subspecialty types consisted of orthopedics, urology, otolaryngology, and multispecialty. Kaiser Family Foundation survey data from 2016 to 2019 was used to inform deductible trends. Augmented Dickey-Fuller tests, linear regressions, and two-sample T-tests were conducted to explore and establish patterns in surgical volume between 2016 and 2019. RESULTS: Overall, average orthopedic surgical volume increased 38.04% from January to December in 2016-2019 with an average difference of 64 cases (95% CI: 47-80), while that of all ASCs combined increased 19.24% within the same timeframe with an average difference of 37 cases (95% CI: 21-52). Average health insurance deductibles rose 12% from $1476 to $1655 within the same timeframe. Regression analysis showed a stronger association between year and volume for orthopedic ASCs (R (Claxton et al., 2019) [2] = 0.796) than for all ASCs combined (R (Claxton et al., 2019) [2] = 0.645). Regression analysis also showed a stronger association between month and volume for orthopedic ASCs (R (Claxton et al., 2019) [2] = 0.488-0.805) than for all ASCs combined (R (Claxton et al., 2019) [2] = 0.115-0.493). CONCLUSION: This study is first to identify regular and predictable yearly and monthly increases in orthopedic ASCs surgical volume. The study also identifies yearly increases in surgical volume for all ASCs. The combination of increasing yearly demand for orthopedic surgery and growing association between month and volume leads to an unnecessary year-end rush. The study aims to inform future policy decisions as well as help ASCs better manage resources throughout the year.

19.
Toxins (Basel) ; 13(6)2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200870

RESUMEN

Ciguatera poisoning (CP) poses a significant threat to ecosystem services and fishery resources in coastal communities. The CP-causative ciguatoxins (CTXs) are produced by benthic dinoflagellates including Gambierdiscus and Fukuyoa spp., and enter reef food webs via grazing on macroalgal substrates. In this study, we report on a 3-year monthly time series in St. Thomas, US Virgin Islands where Gambierdiscus spp. abundance and Caribbean-CTX toxicity in benthic samples were compared to key environmental factors, including temperature, salinity, nutrients, benthic cover, and physical data. We found that peak Gambierdiscus abundance occurred in summer while CTX-specific toxicity peaked in cooler months (February-May) when the mean water temperatures were approximately 26-28 °C. These trends were most evident at deeper offshore sites where macroalgal cover was highest year-round. Other environmental parameters were not correlated with the CTX variability observed over time. The asynchrony between Gambierdiscus spp. abundance and toxicity reflects potential differences in toxin cell quotas among Gambierdiscus species with concomitant variability in their abundances throughout the year. These results have significant implications for monitoring and management of benthic harmful algal blooms and highlights potential seasonal and highly-localized pulses in reef toxin loads that may be transferred to higher trophic levels.


Asunto(s)
Ciguatoxinas/análisis , Dinoflagelados , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Intoxicación por Ciguatera , Ciguatoxinas/toxicidad , Monitoreo del Ambiente , Ratones , Salinidad , Estaciones del Año , Islas Virgenes de los Estados Unidos , Tiempo (Meteorología)
20.
Harmful Algae ; 101: 101914, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526178

RESUMEN

Ciguatera poisoning (CP) is a syndrome caused by the bioaccumulation of lipophilic ciguatoxins in coral reef fish and invertebrates, and their subsequent consumption by humans. These phycotoxins are produced by Gambierdiscus spp., tropical epiphytic dinoflagellates that live on a variety of macrophytes, as well as on dead corals and sand. Recent taxonomic studies have identified novel diversity within the Gambierdiscus genus, with at least 18 species and several sub-groups now identified, many of which co-occur and differ significantly in toxicity. The ability to accurately and quickly distinguish Gambierdiscus species in field samples and determine community composition and abundance is central to assessing CP risk, yet most Gambierdiscus species are indistinguishable using light microscopy, and other enumeration methods are semi-quantitative. In order to investigate the spatial and temporal dynamics of Gambierdiscus species and community toxicity, new tools for species identification and enumeration in field samples are needed. Here, fluorescence in situ hybridization (FISH) probes were designed for seven species commonly found in the Caribbean Sea and Pacific Ocean, permitting their enumeration in field samples using epifluorescence microscopy. This technique enables the assessment of community composition and accurate determination of cell abundances of individual species. Molecular probes detecting G. australes, G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, and the G. silvae/G. polynesiensis clade were designed using alignments of large subunit ribosomal RNA (rRNA) sequences. These probes were tested for specificity and cross-reactivity through experiments in which field samples were spiked with known concentrations of Gambierdiscus cultures, and analyzed to confirm that Gambierdiscus can be successfully detected and enumerated by FISH in the presence of detritus and other organisms. These probes were then used to characterize Gambierdiscus community structure in field samples collected from the Florida Keys and Hawai'i, USA. The probes revealed the co-occurrence of multiple species at each location. Time-series FISH analyses of samples collected from the Florida Keys quantified seasonal shifts in community composition as well as fluctuations in overall Gambierdiscus cell abundance. Application of species-specific FISH probes provides a powerful new tool to those seeking to target individual Gambierdiscus species, including significant toxin-producers, in field populations. Moving forward, analysis of Gambierdiscus community composition across multiple environments and over time will also allow species dynamics to be linked to environmental parameters, improving our ability to understand and manage the current and changing risks of CP worldwide.


Asunto(s)
Dinoflagelados , Animales , Región del Caribe , Dinoflagelados/genética , Florida , Hibridación Fluorescente in Situ , Océano Pacífico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA