Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 162(4): 795-807, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26255772

RESUMEN

Deletion of UBE3A causes the neurodevelopmental disorder Angelman syndrome (AS), while duplication or triplication of UBE3A is linked to autism. These genetic findings suggest that the ubiquitin ligase activity of UBE3A must be tightly maintained to promote normal brain development. Here, we found that protein kinase A (PKA) phosphorylates UBE3A in a region outside of the catalytic domain at residue T485 and inhibits UBE3A activity toward itself and other substrates. A de novo autism-linked missense mutation disrupts this phosphorylation site, causing enhanced UBE3A activity in vitro, enhanced substrate turnover in patient-derived cells, and excessive dendritic spine development in the brain. Our study identifies PKA as an upstream regulator of UBE3A activity and shows that an autism-linked mutation disrupts this phosphorylation control. Moreover, our findings implicate excessive UBE3A activity and the resulting synaptic dysfunction to autism pathogenesis.


Asunto(s)
Síndrome de Angelman/genética , Trastorno Autístico/genética , Mutación Missense , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Síndrome de Angelman/metabolismo , Animales , Trastorno Autístico/metabolismo , Encéfalo/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Espinas Dendríticas/patología , Embrión de Mamíferos/metabolismo , Estabilidad de Enzimas , Femenino , Humanos , Ratones Endogámicos C57BL , Mutagénesis , Fosforilación , Ubiquitina-Proteína Ligasas/metabolismo
2.
Cereb Cortex ; 31(6): 3064-3081, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33570093

RESUMEN

Many developmental syndromes have been linked to genetic mutations that cause abnormal ERK/MAPK activity; however, the neuropathological effects of hyperactive signaling are not fully understood. Here, we examined whether hyperactivation of MEK1 modifies the development of GABAergic cortical interneurons (CINs), a heterogeneous population of inhibitory neurons necessary for cortical function. We show that GABAergic-neuron specific MEK1 hyperactivation in vivo leads to increased cleaved caspase-3 labeling in a subpopulation of immature neurons in the embryonic subpallial mantle zone. Adult mutants displayed a significant loss of parvalbumin (PV), but not somatostatin, expressing CINs and a reduction in perisomatic inhibitory synapses on excitatory neurons. Surviving mutant PV-CINs maintained a typical fast-spiking phenotype but showed signs of decreased intrinsic excitability that coincided with an increased risk of seizure-like phenotypes. In contrast to other mouse models of PV-CIN loss, we discovered a robust increase in the accumulation of perineuronal nets, an extracellular structure thought to restrict plasticity. Indeed, we found that mutants exhibited a significant impairment in the acquisition of behavioral response inhibition capacity. Overall, our data suggest PV-CIN development is particularly sensitive to hyperactive MEK1 signaling, which may underlie certain neurological deficits frequently observed in ERK/MAPK-linked syndromes.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Neuronas GABAérgicas/metabolismo , Inhibición Psicológica , MAP Quinasa Quinasa 1/metabolismo , Parvalbúminas/metabolismo , Animales , Corteza Cerebral/química , Electroencefalografía/métodos , Desarrollo Embrionario/fisiología , Neuronas GABAérgicas/química , Locomoción/fisiología , MAP Quinasa Quinasa 1/análisis , Ratones , Técnicas de Cultivo de Órganos , Parvalbúminas/análisis , Transducción de Señal/fisiología
3.
PLoS Genet ; 15(4): e1008108, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31017896

RESUMEN

RASopathies are a family of related syndromes caused by mutations in regulators of the RAS/Extracellular Regulated Kinase 1/2 (ERK1/2) signaling cascade that often result in neurological deficits. RASopathy mutations in upstream regulatory components, such as NF1, PTPN11/SHP2, and RAS have been well-characterized, but mutation-specific differences in the pathogenesis of nervous system abnormalities remain poorly understood, especially those involving mutations downstream of RAS. Here, we assessed cellular and behavioral phenotypes in mice expressing a Raf1L613V gain-of-function mutation associated with the RASopathy, Noonan Syndrome. We report that Raf1L613V/wt mutants do not exhibit a significantly altered number of excitatory or inhibitory neurons in the cortex. However, we observed a significant increase in the number of specific glial subtypes in the forebrain. The density of GFAP+ astrocytes was significantly increased in the adult Raf1L613V/wt cortex and hippocampus relative to controls. OLIG2+ oligodendrocyte progenitor cells were also increased in number in mutant cortices, but we detected no significant change in myelination. Behavioral analyses revealed no significant changes in voluntary locomotor activity, anxiety-like behavior, or sociability. Surprisingly, Raf1L613V/wt mice performed better than controls in select aspects of the water radial-arm maze, Morris water maze, and cued fear conditioning tasks. Overall, these data show that increased astrocyte and oligodendrocyte progenitor cell (OPC) density in the cortex coincides with enhanced cognition in Raf1L613V/wt mutants and further highlight the distinct effects of RASopathy mutations on nervous system development and function.


Asunto(s)
Corteza Cerebral/metabolismo , Aprendizaje , Mutación , Neuroglía/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/psicología , Proteínas Proto-Oncogénicas c-raf/genética , Animales , Biomarcadores , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Sistema de Señalización de MAP Quinasas , Aprendizaje por Laberinto , Memoria , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Síndrome de Noonan/metabolismo , Oligodendroglía/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo
4.
J Neurosci ; 37(34): 8102-8115, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28733355

RESUMEN

The ERK/MAPK intracellular signaling pathway is hypothesized to be a key regulator of striatal activity via modulation of synaptic plasticity and gene transcription. However, prior investigations into striatal ERK/MAPK functions have yielded conflicting results. Further, these studies have not delineated the cell-type-specific roles of ERK/MAPK signaling due to the reliance on globally administered pharmacological ERK/MAPK inhibitors and the use of genetic models that only partially reduce total ERK/MAPK activity. Here, we generated mouse models in which ERK/MAPK signaling was completely abolished in each of the two distinct classes of medium spiny neurons (MSNs). ERK/MAPK deletion in D1R-MSNs (direct pathway) resulted in decreased locomotor behavior, reduced weight gain, and early postnatal lethality. In contrast, loss of ERK/MAPK signaling in D2R-MSNs (indirect pathway) resulted in a profound hyperlocomotor phenotype. ERK/MAPK-deficient D2R-MSNs exhibited a significant reduction in dendritic spine density, markedly suppressed electrical excitability, and suppression of activity-associated gene expression even after pharmacological stimulation. Our results demonstrate the importance of ERK/MAPK signaling in governing the motor functions of the striatal direct and indirect pathways. Our data further show a critical role for ERK in maintaining the excitability and plasticity of D2R-MSNs.SIGNIFICANCE STATEMENT Alterations in ERK/MAPK activity are associated with drug abuse, as well as neuropsychiatric and movement disorders. However, genetic evidence defining the functions of ERK/MAPK signaling in striatum-related neurophysiology and behavior is lacking. We show that loss of ERK/MAPK signaling leads to pathway-specific alterations in motor function, reduced neuronal excitability, and the inability of medium spiny neurons to regulate activity-induced gene expression. Our results underscore the potential importance of the ERK/MAPK pathway in human movement disorders.


Asunto(s)
Cuerpo Estriado/fisiología , Locomoción/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Movimiento/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Distribución Aleatoria
5.
Development ; 137(23): 4101-10, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21062867

RESUMEN

Polarized radial glia are crucial to the formation of the cerebral cortex. They serve as neural progenitors and as guides for neuronal placement in the developing cerebral cortex. The maintenance of polarized morphology is essential for radial glial functions, but the extent to which the polarized radial glial scaffold is static or dynamic during corticogenesis remains an open question. The developmental dynamics of radial glial morphology, inter-radial glial interactions during corticogenesis, and the role of the cell polarity complexes in these activities remain undefined. Here, using real-time imaging of cohorts of mouse radial glia cells, we show that the radial glial scaffold, upon which the cortex is constructed, is highly dynamic. Radial glial cells within the scaffold constantly interact with one another. These interactions are mediated by growth cone-like endfeet and filopodia-like protrusions. Polarized expression of the cell polarity regulator Cdc42 in radial glia regulates glial endfeet activities and inter-radial glial interactions. Furthermore, appropriate regulation of Gsk3 activity is required to maintain the overall polarity of the radial glia scaffold. These findings reveal dynamism and interactions among radial glia that appear to be crucial contributors to the formation of the cerebral cortex. Related cell polarity determinants (Cdc42, Gsk3) differentially influence radial glial activities within the evolving radial glia scaffold to coordinate the formation of cerebral cortex.


Asunto(s)
Comunicación Celular , Polaridad Celular , Corteza Cerebral/embriología , Glucógeno Sintasa Quinasa 3/metabolismo , Neuroglía/citología , Neuroglía/enzimología , Proteína de Unión al GTP cdc42/metabolismo , Animales , Bioensayo , Forma de la Célula , Corteza Cerebral/citología , Corteza Cerebral/enzimología , Embrión de Mamíferos/citología , Embrión de Mamíferos/enzimología , Glucógeno Sintasa Quinasa 3 beta , Conos de Crecimiento/metabolismo , Integrasas/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Nestina , Seudópodos/enzimología
6.
Proc Natl Acad Sci U S A ; 105(44): 17115-20, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18952847

RESUMEN

Disrupted ERK1/2 (MAPK3/MAPK1) MAPK signaling has been associated with several developmental syndromes in humans; however, mutations in ERK1 or ERK2 have not been described. We demonstrate haplo-insufficient ERK2 expression in patients with a novel approximately 1 Mb micro-deletion in distal 22q11.2, a region that includes ERK2. These patients exhibit conotruncal and craniofacial anomalies that arise from perturbation of neural crest development and exhibit defects comparable to the DiGeorge syndrome spectrum. Remarkably, these defects are replicated in mice by conditional inactivation of ERK2 in the developing neural crest. Inactivation of upstream elements of the ERK cascade (B-Raf and C-Raf, MEK1 and MEK2) or a downstream effector, the transcription factor serum response factor resulted in analogous developmental defects. Our findings demonstrate that mammalian neural crest development is critically dependent on a RAF/MEK/ERK/serum response factor signaling pathway and suggest that the craniofacial and cardiac outflow tract defects observed in patients with a distal 22q11.2 micro-deletion are explained by deficiencies in neural crest autonomous ERK2 signaling.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Cresta Neural/embriología , Animales , Cromosomas Humanos Par 22/genética , Embrión de Mamíferos/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Cresta Neural/enzimología , Fenotipo , Timo/metabolismo , Glándula Tiroides/metabolismo
7.
Nat Neurosci ; 10(5): 598-607, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17396120

RESUMEN

To define the role of the Raf serine/threonine kinases in nervous system development, we conditionally targeted B-Raf and C-Raf, two of the three known mammalian Raf homologs, using a mouse line expressing Cre recombinase driven by a nestin promoter. Targeting of B-Raf, but not C-Raf, markedly attenuated baseline phosphorylation of Erk in neural tissues and led to growth retardation. Conditional elimination of B-Raf in dorsal root ganglion (DRG) neurons did not interfere with survival, but instead caused marked reduction in expression of the glial cell line-derived neurotrophic factor receptor Ret at postnatal stages, associated with a profound reduction in levels of transcription factor CBF-beta. Elimination of both alleles of Braf, which encodes B-Raf, and one allele of Raf1, which encodes C-Raf, affected DRG neuron maturation as well as proprioceptive axon projection toward the ventral horn in the spinal cord. Finally, conditional elimination of all Braf and Raf1 alleles strongly reduced neurotrophin-dependent axon growth in vitro as well as cutaneous axon terminal arborization in vivo. We conclude that Raf function is crucial for several aspects of DRG neuron development, including differentiation and axon growth.


Asunto(s)
Axones/fisiología , Diferenciación Celular/fisiología , Neuronas Aferentes/citología , Neuronas Aferentes/fisiología , Transducción de Señal/fisiología , Quinasas raf/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Embrión de Mamíferos , Exones , Ganglios Espinales/citología , Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/fisiología , Factor de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas Aferentes/efectos de los fármacos , Ratas , Transducción de Señal/genética , Células Madre/efectos de los fármacos , Transfección , Quinasas raf/genética
8.
Cell Rep ; 37(2): 109802, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644582

RESUMEN

Tissue-clearing methods allow every cell in the mouse brain to be imaged without physical sectioning. However, the computational tools currently available for cell quantification in cleared tissue images have been limited to counting sparse cell populations in stereotypical mice. Here, we introduce NuMorph, a group of analysis tools to quantify all nuclei and nuclear markers within the mouse cortex after clearing and imaging by light-sheet microscopy. We apply NuMorph to investigate two distinct mouse models: a Topoisomerase 1 (Top1) model with severe neurodegenerative deficits and a Neurofibromin 1 (Nf1) model with a more subtle brain overgrowth phenotype. In each case, we identify differential effects of gene deletion on individual cell-type counts and distribution across cortical regions that manifest as alterations of gross brain morphology. These results underline the value of whole-brain imaging approaches, and the tools are widely applicable for studying brain structure phenotypes at cellular resolution.


Asunto(s)
Núcleo Celular/patología , Corteza Cerebral/patología , Técnicas de Preparación Histocitológica , Degeneración Nerviosa , Neuroglía/patología , Neuroimagen , Neuronas/patología , Animales , Núcleo Celular/metabolismo , Corteza Cerebral/metabolismo , ADN-Topoisomerasas de Tipo I/deficiencia , ADN-Topoisomerasas de Tipo I/genética , Eliminación de Gen , Genes de Neurofibromatosis 1 , Procesamiento de Imagen Asistido por Computador , Ratones Noqueados , Neuroglía/metabolismo , Neuronas/metabolismo , Fenotipo , Máquina de Vectores de Soporte
9.
Neuron ; 49(3): 325-7, 2006 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-16446135

RESUMEN

Somatosensory stimuli are encoded by molecularly and anatomically diverse classes of dorsal root ganglia (DRG) neurons. In this issue of Neuron, three papers demonstrate that the Runx transcription factors, Runx1 and Runx3, respectively regulate the molecular identities and spinal terminations of TrkA+ nociceptive neurons and TrkC+ proprioceptive neurons. These findings emphasize the importance of intrinsic genetic programs in generating the diversity of DRG neurons and specifying the circuits into which they incorporate.


Asunto(s)
Diferenciación Celular/fisiología , Subunidades alfa del Factor de Unión al Sitio Principal/fisiología , Neuronas Aferentes/fisiología , Animales , Neuronas Aferentes/clasificación , Receptor trkA/metabolismo
10.
Neuron ; 52(6): 981-96, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17178402

RESUMEN

Glycogen synthase kinase-3beta (GSK-3beta) is thought to mediate morphological responses to a variety of extracellular signals. Surprisingly, we found no gross morphological deficits in nervous system development in GSK-3beta null mice. We therefore designed an shRNA that targeted both GSK-3 isoforms. Strong knockdown of both GSK-3alpha and beta markedly reduced axon growth in dissociated cultures and slice preparations. We then assessed the role of different GSK-3 substrates in regulating axon morphology. Elimination of activity toward primed substrates only using the GSK-3 R96A mutant was associated with a defect in axon polarity (axon branching) compared to an overall reduction in axon growth induced by a kinase-dead mutant. Consistent with this finding, moderate reduction of GSK-3 activity by pharmacological inhibitors induced axon branching and was associated primarily with effects on primed substrates. Our results suggest that GSK-3 is a downstream convergent point for many axon growth regulatory pathways and that differential regulation of primed versus all GSK-3 substrates is associated with a specific morphological outcome.


Asunto(s)
Axones/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/fisiología , Hipocampo/citología , Factor de Crecimiento Nervioso/farmacología , Neuronas/citología , Animales , Axones/fisiología , Western Blotting , Recuento de Células/métodos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Embrión de Mamíferos , Técnica del Anticuerpo Fluorescente/métodos , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Técnicas In Vitro , Indoles/farmacología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/fisiología , Modelos Biológicos , Mutación/fisiología , Neocórtex/citología , Neocórtex/efectos de los fármacos , Neuronas/efectos de los fármacos , Oximas/farmacología , Transfección/métodos
11.
J Neurochem ; 115(4): 974-83, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20831597

RESUMEN

Mammalian glycogen synthase kinase-3 (GSK3) is generated from two genes, GSK3α and GSK3ß, while a splice variant of GSK3ß (GSK3ß2), containing a 13 amino acid insert, is enriched in neurons. GSK3α and GSK3ß deletions generate distinct phenotypes. Here, we show that phosphorylation of CRMP2, CRMP4, ß-catenin, c-Myc, c-Jun and some residues on tau associated with Alzheimer's disease, is altered in cortical tissue lacking both isoforms of GSK3. This confirms that they are physiological targets for GSK3. However, deletion of each GSK3 isoform produces distinct substrate phosphorylation, indicating that each has a different spectrum of substrates (e.g. phosphorylation of Thr509, Thr514 and Ser518 of CRMP is not detectable in cortex lacking GSK3ß, yet normal in cortex lacking GSK3α). Furthermore, the neuron-enriched GSK3ß2 variant phosphorylates phospho-glycogen synthase 2 peptide, CRMP2 (Thr509/514), CRMP4 (Thr509), Inhibitor-2 (Thr72) and tau (Ser396), at a lower rate than GSK3ß1. In contrast phosphorylation of c-Myc and c-Jun is equivalent for each GSK3ß isoform, providing evidence that differential substrate phosphorylation is achieved through alterations in expression and splicing of the GSK3 gene. Finally, each GSK3ß splice variant is phosphorylated to a similar extent at the regulatory sites, Ser9 and Tyr216, and exhibit identical sensitivities to the ATP competitive inhibitor CT99021, suggesting upstream regulation and ATP binding properties of GSK3ß1 and GSK3ß2 are similar.


Asunto(s)
Encéfalo/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Fosforilación/genética , Especificidad por Sustrato/genética
12.
Neuron ; 35(1): 65-76, 2002 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-12123609

RESUMEN

Nerve growth factor (NGF) induces dramatic axon growth from responsive embryonic peripheral neurons. However, the roles of the various NGF-triggered signaling cascades in determining specific axon morphological features remain unknown. Here, we transfected activated and inhibitory mutants of Trk effectors into sensory neurons lacking the proapoptotic protein Bax. This allowed axon growth to be studied in the absence of NGF, enabling us to observe the contributions of individual signaling mediators. While Ras was both necessary and sufficient for NGF-stimulated axon growth, the Ras effectors Raf and Akt induced distinct morphologies. Activated Raf-1 caused axon lengthening comparable to NGF, while active Akt increased axon caliber and branching. Our results suggest that the different Trk effector pathways mediate distinct morphological aspects of developing neurons.


Asunto(s)
Ganglios Espinales/embriología , Ganglios Espinales/metabolismo , Conos de Crecimiento/metabolismo , Neuronas Aferentes/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas c-raf/deficiencia , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Diferenciación Celular/genética , Tamaño de la Célula/genética , Femenino , Feto , Ganglios Espinales/citología , Expresión Génica/fisiología , Conos de Crecimiento/ultraestructura , MAP Quinasa Quinasa 1 , Masculino , Ratones , Ratones Noqueados , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Neuronas Aferentes/citología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Tirosina Quinasas Receptoras/genética , Receptor trkA/genética , Receptor trkA/metabolismo , Receptor trkC/genética , Receptor trkC/metabolismo , Transducción de Señal/genética , Proteína X Asociada a bcl-2 , Proteínas ras/genética , Proteínas ras/metabolismo
13.
Neuron ; 43(1): 1-2, 2004 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-15233911

RESUMEN

Upregulation of the transcription factor c-Jun has been correlated with axon regeneration after injury in multiple types of neurons. In this issue of Neuron, Raivich et al. use a nervous system-specific mutant to provide genetic evidence that c-Jun is necessary for efficient axon regeneration.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/genética , Sistema Nervioso/crecimiento & desarrollo , Plasticidad Neuronal/genética , Proteínas Proto-Oncogénicas c-jun/genética , Animales , Traumatismos del Nervio Facial/genética , Traumatismos del Nervio Facial/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Noqueados/genética , Ratones Noqueados/crecimiento & desarrollo , Ratones Noqueados/metabolismo , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Activación Transcripcional/genética
14.
Neuron ; 35(1): 13-6, 2002 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-12123603

RESUMEN

Robust axon regeneration occurs after peripheral nerve injury through coordinated activation of a genetic program and local intracellular signaling cascades. Although regeneration-associated genes are being identified with increasing frequency, most aspects of regeneration-associated intracellular signaling remain poorly understood. Two independent studies now report that upregulation of cAMP is a component of the PNS regeneration program that can be exploited to enhance axon regeneration through the normally inhibitory CNS environment.


Asunto(s)
Conos de Crecimiento/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos , Transducción de Señal/fisiología , Animales , AMP Cíclico/metabolismo , Citocinas/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/lesiones , Ganglios Espinales/metabolismo , Conos de Crecimiento/ultraestructura , Sustancias de Crecimiento/metabolismo , Humanos , Nervios Periféricos/metabolismo , Nervios Periféricos/fisiopatología
15.
Neuron ; 42(6): 897-912, 2004 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-15207235

RESUMEN

Little is known about how nerve growth factor (NGF) signaling controls the regulated assembly of microtubules that underlies axon growth. Here we demonstrate that a tightly regulated and localized activation of phosphatidylinositol 3-kinase (PI3K) at the growth cone is essential for rapid axon growth induced by NGF. This spatially activated PI3K signaling is conveyed downstream through a localized inactivation of glycogen synthase kinase 3beta (GSK-3beta). These two spatially coupled kinases control axon growth via regulation of a microtubule plus end binding protein, adenomatous polyposis coli (APC). Our results demonstrate that NGF signals are transduced to the axon cytoskeleton via activation of a conserved cell polarity signaling pathway.


Asunto(s)
Poliposis Adenomatosa del Colon/metabolismo , Axones/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Microtúbulos/metabolismo , Factores de Crecimiento Nervioso/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Antineoplásicos/farmacología , Axones/efectos de los fármacos , Western Blotting/métodos , Recuento de Células , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Técnica del Anticuerpo Fluorescente/métodos , Ganglios Espinales/citología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Glucógeno Sintasa Quinasa 3 beta , Proteínas Fluorescentes Verdes , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/fisiología , Proteínas Luminiscentes/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Neurológicos , Mutagénesis Sitio-Dirigida/fisiología , Factores de Crecimiento Nervioso/inmunología , Factores de Crecimiento Nervioso/farmacología , Neuronas/citología , Neuronas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal/genética , Transactivadores/metabolismo , Transfección/métodos , Tubulina (Proteína)/metabolismo , beta Catenina
16.
Neuron ; 38(3): 403-16, 2003 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-12741988

RESUMEN

To study the role of NT3 in directing axonal projections of proprioceptive dorsal root ganglion (DRG) neurons, NT3(-/-) mice were crossed with mice carrying a targeted deletion of the proapoptotic gene Bax. In Bax(-/-)/NT3(-/-) mice, NT3-dependent neurons survived and expressed the proprioceptive neuronal marker parvalbumin. Initial extension and collateralization of proprioceptive axons into the spinal cord occurred normally, but proprioceptive axons extended only as far as the intermediate spinal cord. This projection defect is similar to the defect in mice lacking the ETS transcription factor ER81. Few if any DRG neurons from Bax(-/-)/NT3(-/-) mice expressed ER81 protein. Expression of a NT3 transgene in muscle restored DRG ER81 expression in NT3(-/-) mice. Finally, addition of NT3 to DRG explant cultures resulted in induction of ER81 protein. Our data indicate that NT3 mediates the formation of proprioceptive afferent-motor neuron connections via regulation of ER81.


Asunto(s)
Vías Aferentes/embriología , Proteínas de Unión al ADN/deficiencia , Ganglios Espinales/embriología , Neuronas Aferentes/metabolismo , Neurotrofina 3/deficiencia , Propiocepción/fisiología , Proteínas Proto-Oncogénicas c-bcl-2 , Factores de Transcripción/deficiencia , Vías Aferentes/crecimiento & desarrollo , Vías Aferentes/metabolismo , Animales , Animales Recién Nacidos , Tipificación del Cuerpo/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Femenino , Feto , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Masculino , Ratones , Ratones Noqueados , Husos Musculares/embriología , Husos Musculares/crecimiento & desarrollo , Husos Musculares/metabolismo , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/inervación , Neuronas Aferentes/citología , Neurotrofina 3/genética , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Transducción de Señal/genética , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Factores de Transcripción/genética , Proteína X Asociada a bcl-2
17.
Cell Rep ; 18(13): 3167-3177, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28355568

RESUMEN

During development of the vertebrate CNS, the basic helix-loop-helix (bHLH) transcription factor Olig2 sustains replication competence of progenitor cells that give rise to neurons and oligodendrocytes. A pathological counterpart of this developmental function is seen in human glioma, wherein Olig2 is required for maintenance of stem-like cells that drive tumor growth. The mitogenic/gliomagenic functions of Olig2 are regulated by phosphorylation of a triple serine motif (S10, S13, and S14) in the amino terminus. Here, we identify a set of three serine/threonine protein kinases (glycogen synthase kinase 3α/ß [GSK3α/ß], casein kinase 2 [CK2], and cyclin-dependent kinases 1/2 [CDK1/2]) that are, collectively, both necessary and sufficient to phosphorylate the triple serine motif. We show that phosphorylation of the motif itself serves as a template to prime phosphorylation of additional serines and creates a highly charged "acid blob" in the amino terminus of Olig2. Finally, we show that small molecule inhibitors of this forward-feeding phosphorylation cascade have potential as glioma therapeutics.


Asunto(s)
Carcinogénesis/metabolismo , Carcinogénesis/patología , Glioma/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Animales , Quinasa de la Caseína II/metabolismo , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/metabolismo , Modelos Animales de Enfermedad , Glioma/patología , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Ratones , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína p53 Supresora de Tumor/metabolismo
18.
Curr Opin Neurobiol ; 12(5): 523-31, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12367631

RESUMEN

Neuronal morphological differentiation is regulated by numerous polypeptide growth factors (neurotrophic factors). Recently, significant progress has been achieved in clarifying the roles of neurotrophins as well as glial cell line-derived neurotrophic factor family members in peripheral axon elongation during development. Additionally, advances have been made in defining the signal transduction mechanisms employed by these factors in mediating axon morphological responses. Several studies addressed the role of neurotrophic factors in regenerative axon growth and suggest that signaling mechanisms in addition to those triggered by receptor tyrosine kinases may be required for successful peripheral nervous system regeneration. Finally, recent investigations demonstrate that neurotrophic factors can enhance axon growth after spinal cord injuries.


Asunto(s)
Axones/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neuronas/citología , Animales , Axones/ultraestructura , División Celular/genética , División Celular/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo
19.
Elife ; 5: e11903, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26974342

RESUMEN

Axons fail to regenerate after central nervous system (CNS) injury. Modulation of the PTEN/mTORC1 pathway in retinal ganglion cells (RGCs) promotes axon regeneration after optic nerve injury. Here, we report that AKT activation, downstream of Pten deletion, promotes axon regeneration and RGC survival. We further demonstrate that GSK3ß plays an indispensable role in mediating AKT-induced axon regeneration. Deletion or inactivation of GSK3ß promotes axon regeneration independently of the mTORC1 pathway, whereas constitutive activation of GSK3ß reduces AKT-induced axon regeneration. Importantly, we have identified eIF2Bε as a novel downstream effector of GSK3ß in regulating axon regeneration. Inactivation of eIF2Bε reduces both GSK3ß and AKT-mediated effects on axon regeneration. Constitutive activation of eIF2Bε is sufficient to promote axon regeneration. Our results reveal a key role of the AKT-GSK3ß-eIF2Bε signaling module in regulating axon regeneration in the adult mammalian CNS.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Complejos Multiproteicos/metabolismo , Proteína Oncogénica v-akt/metabolismo , Traumatismos del Nervio Óptico/patología , Regeneración , Células Ganglionares de la Retina/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Axones/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL
20.
Cell Rep ; 17(1): 165-178, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27681429

RESUMEN

In cold-blooded vertebrates such as zebrafish, Müller glial cells (MGs) readily proliferate to replenish lost retinal neurons. In mammals, however, MGs lack regenerative capability as they do not spontaneously re-enter the cell cycle unless the retina is injured. Here, we show that gene transfer of ß-catenin in adult mouse retinas activates Wnt signaling and MG proliferation without retinal injury. Upstream of Wnt, deletion of GSK3ß stabilizes ß-catenin and activates MG proliferation. Downstream of Wnt, ß-catenin binds to the Lin28 promoter and activates transcription. Deletion of Lin28 abolishes ß-catenin-mediated effects on MG proliferation, and Lin28 gene transfer stimulates MG proliferation. We further demonstrate that let-7 miRNAs are critically involved in Wnt/Lin28-regulated MG proliferation. Intriguingly, a subset of cell-cycle-reactivated MGs express markers for amacrine cells. Together, these results reveal a key role of Wnt-Lin28-let7 miRNA signaling in regulating proliferation and neurogenic potential of MGs in the adult mammalian retina.


Asunto(s)
Células Ependimogliales/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Proteínas de Unión al ARN/genética , Proteínas Wnt/genética , Células Amacrinas/citología , Células Amacrinas/metabolismo , Animales , Ciclo Celular/genética , Diferenciación Celular , Proliferación Celular , Células Ependimogliales/citología , Glucógeno Sintasa Quinasa 3 beta/deficiencia , Glucógeno Sintasa Quinasa 3 beta/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Transcripción Genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA