Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Antimicrob Agents Chemother ; 66(9): e0049622, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36066241

RESUMEN

The CDC's Emerging Infections Program (EIP) conducted population- and laboratory-based surveillance of US carbapenem-resistant Pseudomonas aeruginosa (CRPA) from 2016 through 2018. To characterize the pathotype, 1,019 isolates collected through this project underwent antimicrobial susceptibility testing and whole-genome sequencing. Sequenced genomes were classified using the seven-gene multilocus sequence typing (MLST) scheme and a core genome (cg)MLST scheme was used to determine phylogeny. Both chromosomal and horizontally transmitted mechanisms of carbapenem resistance were assessed. There were 336 sequence types (STs) among the 1,019 sequenced genomes, and the genomes varied by an average of 84.7% of the cgMLST alleles used. Mutations associated with dysfunction of the porin OprD were found in 888 (87.1%) of the genomes and were correlated with carbapenem resistance, and a machine learning model incorporating hundreds of genetic variations among the chromosomal mechanisms of resistance was able to classify resistant genomes. While only 7 (0.1%) isolates harbored carbapenemase genes, 66 (6.5%) had acquired non-carbapenemase ß-lactamase genes, and these were more likely to have OprD dysfunction and be resistant to all carbapenems tested. The genetic diversity demonstrates that the pathotype includes a variety of strains, and clones previously identified as high-risk make up only a minority of CRPA strains in the United States. The increased carbapenem resistance in isolates with acquired non-carbapenemase ß-lactamase genes suggests that horizontally transmitted mechanisms aside from carbapenemases themselves may be important drivers of the spread of carbapenem resistance in P. aeruginosa.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Centers for Disease Control and Prevention, U.S. , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Porinas/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/epidemiología , Estados Unidos/epidemiología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
2.
Clin Infect Dis ; 72(12): e948-e956, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33150366

RESUMEN

BACKGROUND: We aimed to characterize invasive pneumococcal disease (IPD) isolates collected from multistate surveillance in the United States during 2018 and examine within-serotype propensities of isolates to form related clusters. METHODS: We predicted strain features using whole genome sequencing obtained from 2885 IPD isolates obtained through the Center for Disease Control and Prevention's Active Bacterial Core surveillance (ABCs), which has a surveillance population of approximately 34.5 million individuals distributed among 10 states. Phylogenetic analysis was provided for serotypes accounting for ≥27 isolates. RESULTS: Thirteen-valent pneumococcal conjugate vaccine (PCV13) serotypes together with 6C accounted for 23 of 105 (21.9%) of isolates from children aged <5 years and 820 of 2780 (29.5%) isolates from those aged ≥5 years. The most common serotypes from adult IPD isolates were serotypes 3 (413/2780 [14.9%]), 22F (291/2780 [10.5%]), and 9N (191/2780 [6.9%]). Among child IPD isolates, serotypes 15BC (18/105 [17.1%]), 3 (11/105 [10.5%]), and 33F (10/105 [9.5%]) were most common. Serotypes 4, 12F, 20, and 7F had the highest proportions of isolates that formed related clusters together with the highest proportions of isolates from persons experiencing homelessness (PEH). Among 84 isolates from long-term care facilities, 2 instances of highly related isolate pairs from co-residents were identified. CONCLUSIONS: Non-PCV13 serotypes accounted for >70% of IPD in ABCs; however, PCV13 serotype 3 is the most common IPD serotype overall. Serotypes most common among PEH were more often associated with temporally related clusters identified both among PEH and among persons not reportedly experiencing homelessness.


Asunto(s)
Personas con Mala Vivienda , Infecciones Neumocócicas , Adulto , Niño , Humanos , Lactante , Filogenia , Infecciones Neumocócicas/epidemiología , Vacunas Neumococicas , Serogrupo , Streptococcus pneumoniae/genética
3.
Antonie Van Leeuwenhoek ; 113(1): 137-145, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31485840

RESUMEN

The purpose of this study was to determine if giraffes (Giraffa camelopardalis) living in captivity at the Jacksonville Zoo and Gardens, Jacksonville, FL were colonised with carbapenem-resistant bacteria and, if found, to identify underlying genetic mechanisms contributing to a carbapenem-resistant phenotype. Faecal samples from seven giraffes were examined for carbapenem-resistant bacteria. Only one isolate (a Xanthomondaceae) was found to be carbapenem-resistant by antibiotic susceptibility testing. This isolate was selected for additional characterization, including whole genome sequencing (WGS). Based on average nucleotide identity, the bacterium was identified as Xanthomonas citri pv. mangiferaeindicae-like strain gir. Phenotypic carbapenemase tests and PCR for the most common carbapenemase genes produced negative results, suggesting that carbapenem resistance was mediated by another mechanism. Resistance gene profile analysis of WGS results confirmed these results. Among identified resistance genes, a chromosomal class A beta-lactamase with 71% identity to the penP beta-lactamase gene from Xanthomonas citri ssp. citri was identified, which could contribute to a carbapenem-resistant phenotype.


Asunto(s)
Carbapenémicos/farmacología , Heces/microbiología , Xanthomonas/enzimología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Jirafas , Secuenciación Completa del Genoma , Xanthomonas/efectos de los fármacos , Xanthomonas/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
5.
Antimicrob Agents Chemother ; 59(12): 7723-34, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26438492

RESUMEN

Carbapenemase-producing, carbapenem-resistant Enterobacteriaceae, or CP-CRE, are an emerging threat to human and animal health, because they are resistant to many of the last-line antimicrobials available for disease treatment. Carbapenemase-producing Enterobacter cloacae harboring blaKPC-3 recently was reported in the upper midwestern United States and implicated in a hospital outbreak in Fargo, North Dakota (L. M. Kiedrowski, D. M. Guerrero, F. Perez, R. A. Viau, L. J. Rojas, M. F. Mojica, S. D. Rudin, A. M. Hujer, S. H. Marshall, and R. A. Bonomo, Emerg Infect Dis 20:1583-1585, 2014, http://dx.doi.org/10.3201/eid2009.140344). In early 2009, the Minnesota Department of Health began collecting and screening CP-CRE from patients throughout Minnesota. Here, we analyzed a retrospective group of CP-E. cloacae isolates (n = 34) collected between 2009 and 2013. Whole-genome sequencing and analysis revealed that 32 of the strains were clonal, belonging to the ST171 clonal complex and differing collectively by 211 single-nucleotide polymorphisms, and it revealed a dynamic clone under positive selection. The phylogeography of these strains suggests that this clone existed in eastern North Dakota and western Minnesota prior to 2009 and subsequently was identified in the Minneapolis and St. Paul metropolitan area. All strains harbored identical IncFIA-like plasmids conferring a CP-CRE phenotype and an additional IncX3 plasmid. In a single patient with multiple isolates submitted over several months, we found evidence that these plasmids had transferred from the E. cloacae clone to an Escherichia coli ST131 bacterium, rendering it as a CP-CRE. The spread of this clone throughout the upper midwestern United States is unprecedented for E. cloacae and highlights the importance of continued surveillance to identify such threats to human health.


Asunto(s)
Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/genética , Infecciones por Enterobacteriaceae/microbiología , beta-Lactamasas/genética , ADN Bacteriano/genética , Farmacorresistencia Bacteriana , Infecciones por Enterobacteriaceae/transmisión , Genoma Bacteriano , Geografía , Humanos , Pruebas de Sensibilidad Microbiana , Medio Oeste de Estados Unidos , Minnesota , North Dakota , Plásmidos/genética , Polimorfismo de Nucleótido Simple , Estudios Retrospectivos
6.
Am J Infect Control ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38692307

RESUMEN

BACKGROUND: Understanding the epidemiology of carbapenem-resistant A. baumannii complex (CRAB) and the patients impacted is an important step toward informing better infection prevention and control practices and improving public health response. METHODS: Active, population-based surveillance was conducted for CRAB in 9 U.S. sites from January 1 to December 31, 2019. Medical records were reviewed, isolates were collected and characterized including antimicrobial susceptibility testing and whole genome sequencing. RESULTS: Among 136 incident cases in 2019, 66 isolates were collected and characterized; 56.5% were from cases who were male, 54.5% were from persons of Black or African American race with non-Hispanic ethnicity, and the median age was 63.5 years. Most isolates, 77.2%, were isolated from urine, and 50.0% were collected in the outpatient setting; 72.7% of isolates harbored an acquired carbapenemase gene (aCP), predominantly blaOXA-23 or blaOXA-24/40; however, an isolate with blaNDM was identified. The antimicrobial agent with the most in vitro activity was cefiderocol (96.9% of isolates were susceptible). CONCLUSIONS: Our surveillance found that CRAB isolates in the U.S. commonly harbor an aCP, have an antimicrobial susceptibility profile that is defined as difficult-to-treat resistance, and epidemiologically are similar regardless of the presence of an aCP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA