Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32122891

RESUMEN

Plasmodium vivax relapse is one of the major causes of sustained global malaria transmission. Primaquine (PQ) is the only commercial drug available to prevent relapses, and its efficacy is dependent on metabolic activation by cytochrome P450 2D6 (CYP2D6). Impaired CYP2D6 function, caused by allelic polymorphisms, leads to the therapeutic failure of PQ as a radical cure for P. vivax malaria. Here, we hypothesized that the host immune response to malaria parasites modulates susceptibility to P. vivax recurrences in association with CYP2D6 activity. We performed a 10-year retrospective study by genotyping CYP2D6 polymorphisms in 261 malaria-exposed individuals from the Brazilian Amazon. The immune responses against a panel of P. vivax blood-stage antigens were evaluated by serological assays. We confirmed our previous findings, which indicated an association between impaired CYP2D6 activity and a higher risk of multiple episodes of P. vivax recurrence (risk ratio, 1.75; 95% confidence interval [CI], 1.2 to 2.6; P = 0.0035). An important finding was a reduction of 3% in the risk of recurrence (risk ratio, 0.97; 95% CI, 0.96 to 0.98; P < 0.0001) per year of malaria exposure, which was observed for individuals with both reduced and normal CYP2D6 activity. Accordingly, subjects with long-term malaria exposure and persistent antibody responses to various antigens showed fewer episodes of malaria recurrence. Our findings have direct implications for malaria control, since it was shown that nonimmune individuals who do not respond adequately to treatment due to reduced CYP2D6 activity may present a significant challenge for sustainable progress toward P. vivax malaria elimination.


Asunto(s)
Antimaláricos/uso terapéutico , Citocromo P-450 CYP2D6/metabolismo , Malaria Vivax/tratamiento farmacológico , Plasmodium vivax/efectos de los fármacos , Primaquina/uso terapéutico , Adolescente , Adulto , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Brasil , Niño , Citocromo P-450 CYP2D6/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plasmodium vivax/genética , Plasmodium vivax/inmunología , Recurrencia , Insuficiencia del Tratamiento , Adulto Joven
2.
PLoS Pathog ; 13(7): e1006484, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28700710

RESUMEN

Although the importance of humoral immunity to malaria has been established, factors that control antibody production are poorly understood. Follicular helper T cells (Tfh cells) are pivotal for generating high-affinity, long-lived antibody responses. While it has been proposed that expansion of antigen-specific Tfh cells, interleukin (IL) 21 production and robust germinal center formation are associated with protection against malaria in mice, whether Tfh cells are found during Plasmodium vivax (P. vivax) infection and if they play a role during disease remains unknown. Our goal was to define the role of Tfh cells during P. vivax malaria. We demonstrate that P. vivax infection triggers IL-21 production and an increase in Tfh cells (PD-1+ICOS+CXCR5+CD45RO+CD4+CD3+). As expected, FACS-sorted Tfh cells, the primary source of IL-21, induced immunoglobulin production by purified naïve B cells. Furthermore, we found that P. vivax infection alters the B cell compartment and these alterations were dependent on the number of previous infections. First exposure leads to increased proportions of activated and atypical memory B cells and decreased frequencies of classical memory B cells, whereas patients that experienced multiple episodes displayed lower proportions of atypical B cells and higher frequencies of classical memory B cells. Despite the limited sample size, but consistent with the latter finding, the data suggest that patients who had more than five infections harbored more Tfh cells and produce more specific antibodies. P. vivax infection triggers IL-21 production by Tfh that impact B cell responses in humans.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Linfocitos B/inmunología , Malaria Vivax/inmunología , Plasmodium vivax/fisiología , Linfocitos T Colaboradores-Inductores/inmunología , Adolescente , Adulto , Animales , Femenino , Humanos , Activación de Linfocitos , Malaria Vivax/parasitología , Masculino , Ratones , Persona de Mediana Edad , Plasmodium vivax/inmunología , Adulto Joven
3.
Malar J ; 14: 442, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26546161

RESUMEN

BACKGROUND: Polyparasitism is a common condition in humans but its impact on the host immune system and clinical diseases is still poorly understood. There are few studies of the prevalence and the effect of malaria-intestinal parasite co-infections in the immune response to malaria vaccine candidates. The present study determines whether the presence of malaria and intestinal parasites co-infection is associated with impaired IgG responses to Plasmodium vivax AMA-1 and MSP-119 in a rural population of the Brazilian Amazon. METHODS: A cross-sectional survey was performed in a rural area of Rondonia State and 279 individuals were included in the present study. At recruitment, whole blood was collected and Plasmodium and intestinal parasites were detected by microscopy and molecular tests. Blood cell count and haemoglobin were also tested and antibody response specific to P. vivax AMA-1 and MSP-119 was measured in plasma by ELISA. The participants were grouped according to their infection status: singly infected with Plasmodium (M); co-infected with Plasmodium and intestinal parasites (CI); singly infected with intestinal parasites (IP) and negative (N) for both malaria and intestinal parasites. RESULTS: The prevalence of intestinal parasites was significantly higher in individuals with malaria and protozoan infections were more prevalent. IgG antibodies to PvAMA-1 and/or PvMSP-119 were detected in 74 % of the population. The prevalence of specific IgG was similar for both proteins in all four groups and among the groups the lowest prevalence was in IP group. The cytophilic sub-classes IgG1 and IgG3 were predominant in all groups for PvAMA-1 and IgG1, IgG3 and IgG4 for PvMSP-119. In the case of non-cytophilic antibodies to PvAMA-1, IgG2 was significantly higher in IP and N group when compared to M and CI while IgG4 was higher in IP group. CONCLUSIONS: The presence of intestinal parasites, mainly protozoans, in malaria co-infected individuals does not seem to alter the antibody immune responses to P. vivax AMA-1 and MSP-119. However, IgG response to both AMA1 and MSP1 were lower in individuals with intestinal parasites.


Asunto(s)
Antígenos de Protozoos/genética , Inmunoglobulina G/inmunología , Parasitosis Intestinales/epidemiología , Malaria/epidemiología , Proteínas de la Membrana/genética , Proteína 1 de Superficie de Merozoito/genética , Proteínas Protozoarias/genética , Adulto , Antígenos de Protozoos/metabolismo , Brasil/epidemiología , Coinfección/epidemiología , Coinfección/inmunología , Coinfección/parasitología , Humanos , Parasitosis Intestinales/inmunología , Parasitosis Intestinales/parasitología , Malaria/inmunología , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Proteína 1 de Superficie de Merozoito/metabolismo , Plasmodium vivax/fisiología , Prevalencia , Proteínas Protozoarias/metabolismo , Adulto Joven
4.
Cell Biochem Funct ; 31(5): 361-4, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23754498

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) is an interferon-γ (IFN-γ)-induced tryptophan-degrading enzyme, producing kynurenine (KYN) that participates in the mechanism of tumor immune tolerance. Thus, IDO inhibition has been considered a strategy for anticancer therapy. The aim of this study was to identify whether the metabolites originated from the competitive routes of tryptophan metabolism, such as the serotonergic or N, N-dimethyltryptamine (DMT) pathways, have inhibitory effects on recombinant human IDO (rhIDO) activity. Serotonin and melatonin had no effect; on the other hand, tryptamine (TRY) and DMT modulated the activity of rhIDO as classical non-competitive inhibitors, with Ki values of 156 and 506 µM, respectively. This inhibitory effect was also observed on constitutively expressed or IFN-γ-induced IDO in the A172 human glioma cell line. TRY and DMT increased the cytotoxic activity of peripheral blood mononuclear cells (PBMCs) in co-culture assays. We conclude that the IDO inhibition by TRY and DMT contributed to a more effective tumor-reactive response by the PBMCs.


Asunto(s)
Citotoxicidad Inmunológica/efectos de los fármacos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Leucocitos Mononucleares/efectos de los fármacos , N,N-Dimetiltriptamina/farmacología , Triptaminas/farmacología , Unión Competitiva , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Pruebas de Enzimas , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Cinética , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/enzimología , Leucocitos Mononucleares/inmunología , Unión Proteica , Proteínas Recombinantes/metabolismo , Triptófano/metabolismo
5.
Front Immunol ; 11: 28, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153555

RESUMEN

The lack of continuous in vitro cultures has been an obstacle delaying pre-clinical testing of Plasmodium vivax vaccine formulations based on known antigens. In this study, we generated a model to test available formulations based on the P. vivax MSP119 antigen. The Plasmodium berghei strains ANKA and NK65 were modified to express PvMSP119 instead of the endogenous PbMSP119. The hybrid parasites were used to challenge C57BL/6 or BALB/c mice immunized with PvMSP119-based vaccine formulations. The PvMSP119 was correctly expressed in the P. berghei hybrid mutant lines as confirmed by immunofluorescence using anti-PvMSP119 monoclonal antibodies and by Western blot. Replacement of the PbMSP119 by the PvMSP119 had no impact on asexual growth in vivo. High titers of specific antibodies to PvMSP119 were not sufficient to control initial parasitemia in the immunized mice, but late parasitemia control and a balanced inflammatory process protected these mice from dying, suggesting that an established immune response to PvMSP119 in this model can help immunity mounted later during infection.


Asunto(s)
Antígenos de Protozoos/inmunología , Inmunogenicidad Vacunal , Vacunas contra la Malaria/inmunología , Malaria Vivax/inmunología , Proteína 1 de Superficie de Merozoito/inmunología , Proteína 1 de Superficie de Merozoito/metabolismo , Plasmodium berghei/metabolismo , Plasmodium vivax/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Femenino , Malaria Vivax/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Parasitemia/inmunología , Plásmidos/genética , Plasmodium berghei/genética , Proteínas Protozoarias/inmunología , Transfección , Resultado del Tratamiento , Vacunación
6.
Front Microbiol ; 11: 400, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256470

RESUMEN

The human immune response that controls Plasmodium infection in the liver and blood stages of the parasite life cycle is composed by both pro- and anti-inflammatory programs. Pro-inflammatory responses primarily mediated by IFN-γ controls the infection, but also induce tolerogenic mechanisms to limit host damage, including the tryptophan (TRP) catabolism pathway mediated by the enzyme Indoleamine 2,3-Dioxygenase (IDO1), an enzyme that catalyzes the degradation of TRP to kynurenines (KYN). Here we assessed total serum kynurenines and cytokine dynamics in a cohort of natural Plasmodium vivax human infection and compared them to those of endemic healthy controls and other febrile diseases. In acute malaria, the absolute free kynurenine (KYN) serum levels and the KYN to TRP (KYN/TRP) ratio were significantly elevated in patients compared to healthy controls. Individuals with a diagnosis of a first malaria episode had higher serum KYN levels than individuals with a previous malaria episode. We observed an inverse relationship between the serum levels of IFN-γ and IL-10 in patients with a first malaria episode compared to those of subjects with previous history of malaria. Kynurenine elevation was positively correlated with serum IFN-γ levels in acute infection, whereas, it was negatively correlated with parasite load and P. vivax LDH levels. Overall, the differences observed between infected individuals depended on the number of Plasmodium infections. The decrease in the KYN/TRP ratio in malaria-experienced subjects coincided with the onset of anti-P. vivax IgG. These results suggest that P. vivax infection induces a strong anti-inflammatory program in individuals with first time malaria, which fades with ensuing protective immunity after subsequent episodes. Understanding the tolerance mechanisms involved in the initial exposure would help in defining the balance between protective and pathogenic immune responses necessary to control infection and to improve vaccination strategies.

7.
Sci Rep ; 8(1): 13851, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30218021

RESUMEN

Malaria has provided a major selective pressure and has modulated the genetic diversity of the human genome. The variants of the Duffy Antigen/Receptor for Chemokines (DARC) gene have probably been selected by malaria parasites, particularly the FY*O allele, which is fixed in sub-Saharan Africa and confers resistance to Plasmodium vivax infection. Here, we showed the influence of genomic ancestry on the distribution of DARC genotypes in a highly admixed Brazilian population and confirmed the decreased susceptibility of the FY*A/FY*O genotype to clinical P. vivax malaria. FY*B/FY*O individuals were associated with a greater risk of developing clinical malaria. A remarkable difference among DARC variants concerning the susceptibility to clinical malaria was more evident for individuals who were less exposed to malaria, as measured by the time of residence in the endemic area. Additionally, we found that DARC-negative and FY*A/FY*O individuals had a greater chance of acquiring high levels of antibodies against the 19-kDa C-terminal region of the P. vivax merozoite surface protein-1. Altogether, our results provide evidence that DARC polymorphisms modulate the susceptibility to clinical P. vivax malaria and influence the naturally-acquired humoral immune response to malaria blood antigens, which may interfere with the efficacy of a future vaccine against malaria.


Asunto(s)
Sistema del Grupo Sanguíneo Duffy/genética , Exposición a Riesgos Ambientales , Predisposición Genética a la Enfermedad/genética , Malaria Vivax/genética , Plasmodium vivax/fisiología , Polimorfismo Genético , Receptores de Superficie Celular/genética , Adolescente , Adulto , Anticuerpos Antiprotozoarios/inmunología , Niño , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plasmodium vivax/inmunología , Factores de Tiempo , Adulto Joven
8.
Diagn Microbiol Infect Dis ; 58(2): 223-30, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17300910

RESUMEN

A multianalyte Dot-enzyme-linked immunosorbent assay (Dot-ELISA-Multi) with Trypanosoma cruzi epimastigote alkaline extract (EAE), trypomastigote excreted-secreted antigen (TESA), recombinant protein derived from 19-kDa C-terminal region of the Plasmodium vivax merozoite surface protein 1 (PvMSP1(19)), Plasmodium falciparum Zwittergent extract (Pf-Zw), and Treponema pallidum Zwittergent extract (Tp-Zw) was standardized and evaluated as a method for surveying IgG-specific antibodies in Chagas disease, malaria, and syphilis in a single test. The study was carried out on serum samples from 52 patients with chronic Chagas disease, 103 individuals with current (parasitemic) or past malaria (aparasitemic), 43 patients with syphilis, 21 individuals with heterologous antibodies, and 100 blood donors. Dot-ELISA-Multi yielded 99% specificity for Chagas disease and 100% for malaria and syphilis. The test sensitivity was 100% for chronic Chagas disease, 88% for syphilis, 90% for P. vivax, and 47% for P. falciparum. In past malaria individuals, positivity was 92%. Therefore, Dot-ELISA-Multi can be useful under field conditions where laboratory facilities and resources are scarce, for small-scale epidemiologic studies.


Asunto(s)
Enfermedad de Chagas/diagnóstico , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina G/sangre , Malaria Falciparum/diagnóstico , Serodiagnóstico de la Sífilis/métodos , Animales , Enfermedad de Chagas/inmunología , Humanos , Malaria Falciparum/inmunología , Sensibilidad y Especificidad
9.
Front Immunol ; 8: 1727, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29255470

RESUMEN

Dendritic cells (DCs) are antigen-presenting cells essential for the induction of adaptive immune responses. Their unprecedented ability to present antigens to T cells has made them excellent targets for vaccine development. In the last years, a new technology based on antigen delivery directly to different DC subsets through the use of hybrid monoclonal antibodies (mAbs) to DC surface receptors fused to antigens of interest opened new perspectives for the induction of robust immune responses. Normally, the hybrid mAbs are administered with adjuvants that induce DC maturation. In this work, we targeted an antigen to the CD8α+ or the CD8α- DC subsets in the presence of CpG oligodeoxinucleotides (ODN) or bacterial flagellin, using hybrid αDEC205 or αDCIR2 mAbs, respectively. We also accessed the role of toll-like receptors (TLRs) 5 and 9 signaling in the induction of specific humoral and cellular immune responses. Wild-type and TLR5 or TLR9 knockout mice were immunized with two doses of the hybrid αDEC205 or αDCIR2 mAbs, as well as with an isotype control, together with CpG ODN 1826 or flagellin. A chimeric antigen containing the Plasmodium vivax 19 kDa portion of the merozoite surface protein (MSP119) linked to the Pan-allelic DR epitope was fused to each mAb. Specific CD4+ T cell proliferation, cytokine, and antibody production were analyzed. We found that CpG ODN 1826 or flagellin were able to induce CD4+ T cell proliferation, CD4+ T cells producing pro-inflammatory cytokines, and specific antibodies when the antigen was targeted to the CD8α+ DC subset. On the other hand, antigen targeting to CD8α- DC subset promoted specific antibody responses and proliferation, but no detectable pro-inflammatory CD4+ T cell responses. Also, specific antibody responses after antigen targeting to CD8α+ or CD8α- DCs were reduced in the absence of TLR9 or TLR5 signaling, while CD4+ T cell proliferation was mainly affected after antigen targeting to CD8α+ DCs and in the absence of TLR9 signaling. These results extend our understanding of the modulation of specific immune responses induced by antigen targeting to DCs in the presence of different adjuvants. Such knowledge may be useful for the optimization of DC-based vaccines.

10.
Clin Vaccine Immunol ; 20(9): 1418-25, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23863502

RESUMEN

A Plasmodium falciparum circumsporozoite protein (CSP)-based recombinant fusion vaccine is the first malaria vaccine to reach phase III clinical trials. Resistance to infection correlated with the production of antibodies to the immunodominant central repeat region of the CSP. In contrast to P. falciparum, vaccine development against the CSP of Plasmodium vivax malaria is far behind. Based on this gap in our knowledge, we generated a recombinant chimeric protein containing the immunodominant central repeat regions of the P. vivax CSP fused to Salmonella enterica serovar Typhimurium-derived flagellin (FliC) to activate the innate immune system. The recombinant proteins that were generated contained repeat regions derived from each of the 3 different allelic variants of the P. vivax CSP or a fusion of regions derived from each of the 3 allelic forms. Mice were subcutaneously immunized with the fusion proteins alone or in combination with the Toll-like receptor 3 (TLR-3) agonist poly(I·C), and the anti-CSP serum IgG response was measured. Immunization with a mixture of the 3 recombinant proteins, each containing immunodominant epitopes derived from a single allelic variant, rather than a single recombinant protein carrying a fusion of regions derived from each of 3 allelic forms elicited a stronger immune response. This response was independent of TLR-4 but required TLR-5/MyD88 activation. Antibody titers significantly increased when poly(I·C) was used as an adjuvant with a mixture of the 3 recombinant proteins. These recombinant fusion proteins are novel candidates for the development of an effective malaria vaccine against P. vivax.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Flagelina/farmacología , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Salmonella typhimurium/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/genética , Animales , Anticuerpos Antiprotozoarios/sangre , Epítopos/genética , Epítopos/inmunología , Femenino , Flagelina/genética , Inyecciones Subcutáneas , Vacunas contra la Malaria/genética , Ratones , Plasmodium vivax/genética , Poli I-C/administración & dosificación , Poli I-C/farmacología , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Salmonella typhimurium/genética , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
11.
Microbes Infect ; 14(9): 730-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22445906

RESUMEN

An important step when designing a vaccine is identifying the antigens that function as targets of naturally acquired antibodies. We investigated specific antibody responses against two Plasmodium vivax vaccine candidates, PvMSP-119 and PvMSP-3α359₋798. Moreover, we assessed the relationship between these antibodies and morbidity parameters. PvMSP-119 was the most immunogenic antigen and the frequency of responders to this protein tended to increase in P. vivax patients with higher parasitemia. For both antigens, IgG antibody responses tended to be lower in patients who had experienced their first bout of malaria. Furthermore, anemic patients presented higher IgG antibody responses to PvMSP-3α359₋798. Since the humoral response involves a number of antibodies acting simultaneously on different targets, we performed a Principal Component Analysis (PCA). Anemic patients had, on average, higher first principal component scores (IgG1/IgG2/IgG3/IgG4 anti-MSP3α), which were negatively correlated with hemoglobin levels. Since antibodies against PfMSP-3 have been strongly associated with clinical protection, we cannot exclude the possibility of a dual role of PvMSP-3 specific antibodies in both immunity and pathogenesis of vivax malaria. Our results confirm the high immunogenicity of the conserved C terminus of PvMSP-1 and points to the considerable immunogenicity of polymorphic PvMSP-3α359₋798 during natural infection.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Malaria Vivax/inmunología , Proteína 1 de Superficie de Merozoito/inmunología , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Anciano , Brasil , Niño , Femenino , Humanos , Inmunoglobulina G/sangre , Vacunas contra la Malaria/administración & dosificación , Masculino , Persona de Mediana Edad , Adulto Joven
12.
PLoS One ; 6(6): e21289, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21713006

RESUMEN

Apical membrane antigen 1 (AMA-1) is considered to be a major candidate antigen for a malaria vaccine. Previous immunoepidemiological studies of naturally acquired immunity to Plasmodium vivax AMA-1 (PvAMA-1) have shown a higher prevalence of specific antibodies to domain II (DII) of AMA-1. In the present study, we confirmed that specific antibody responses from naturally infected individuals were highly reactive to both full-length AMA-1 and DII. Also, we demonstrated a strong association between AMA-1 and DII IgG and IgG subclass responses. We analyzed the primary sequence of PvAMA-1 for B cell linear epitopes co-occurring with intrinsically unstructured/disordered regions (IURs). The B cell epitope comprising the amino acid sequence 290-307 of PvAMA-1 (SASDQPTQYEEEMTDYQK), with the highest prediction scores, was identified in domain II and further selected for chemical synthesis and immunological testing. The antigenicity of the synthetic peptide was identified by serological analysis using sera from P. vivax-infected individuals who were knowingly reactive to the PvAMA-1 ectodomain only, domain II only, or reactive to both antigens. Although the synthetic peptide was recognized by all serum samples specific to domain II, serum with reactivity only to the full-length protein presented 58.3% positivity. Moreover, IgG reactivity against PvAMA-1 and domain II after depletion of specific synthetic peptide antibodies was reduced by 18% and 33% (P = 0.0001 for both), respectively. These results suggest that the linear epitope SASDQPTQYEEEMTDYQK is highly antigenic during natural human infections and is an important antigenic region of the domain II of PvAMA-1, suggesting its possible future use in pre-clinical studies.


Asunto(s)
Antígenos de Protozoos/inmunología , Epítopos de Linfocito B/inmunología , Proteínas de la Membrana/inmunología , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Anciano , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/genética , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/genética , Humanos , Malaria Vivax/sangre , Malaria Vivax/inmunología , Malaria Vivax/microbiología , Proteínas de la Membrana/genética , Persona de Mediana Edad , Datos de Secuencia Molecular , Péptidos/genética , Péptidos/inmunología , Plasmodium vivax/citología , Proteínas Protozoarias/genética , Adulto Joven
13.
PLoS One ; 5(3): e9623, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20224778

RESUMEN

Circulation CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) have been associated with the delicate balancing between control of overwhelming acute malaria infection and prevention of immune pathology due to disproportionate inflammatory responses to erythrocytic stage of the parasite. While the role of Tregs has been well-documented in murine models and P. falciparum infection, the phenotype and function of Tregs in P. vivax infection is still poorly characterized. In the current study, we demonstrated that patients with acute P. vivax infection presented a significant augmentation of circulating Tregs producing anti-inflammatory (IL-10 and TGF-beta) as well as pro-inflammatory (IFN-gamma, IL-17) cytokines, which was further positively correlated with parasite burden. Surface expression of GITR molecule and intracellular expression of CTLA-4 were significantly upregulated in Tregs from infected donors, presenting also a positive association between either absolute numbers of CD4(+)CD25(+)FoxP3(+)GITR(+) or CD4(+)CD25(+)FoxP3(+)CTLA-4(+) and parasite load. Finally, we demonstrate a suppressive effect of Treg cells in specific T cell proliferative responses of P. vivax infected subjects after antigen stimulation with Pv-AMA-1. Our findings indicate that malaria vivax infection lead to an increased number of activated Treg cells that are highly associated with parasite load, which probably exert an important contribution to the modulation of immune responses during P. vivax infection.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Factores de Transcripción Forkhead/biosíntesis , Subunidad alfa del Receptor de Interleucina-2/biosíntesis , Malaria/parasitología , Plasmodium vivax/genética , Adulto , Antígenos CD/metabolismo , Antígeno CTLA-4 , Proliferación Celular , Humanos , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Malaria/sangre , Persona de Mediana Edad , Fenotipo , Factor de Crecimiento Transformador beta/metabolismo
14.
Vaccine ; 26(9): 1204-13, 2008 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-18242795

RESUMEN

The recombinant apical membrane antigen 1 (AMA-1) and 19-kDa fragment of merozoite surface protein (MSP-1(19)) are the lead candidates for inclusion in a vaccine against blood stages of malaria due to encouraging protective studies in humans and animals. Despite the importance of an efficacious malaria vaccine, vaccine-related research has focused on identifying antigens that result in protective immunity rather than determining the nature of anti-malarial immune effector mechanisms. Moreover, emphasis has been placed on adaptive rather than innate immune responses. In this study, we investigated the effect of Plasmodium vivax vaccine candidates Pv-AMA-1 and Pv-MSP-1(19) on the immune response of malaria-naïve donors. Maturation of dendritic cells is altered by Pv-AMA-1 but not Pv-MSP-1(19), as observed by differential expression of cell surface markers. In addition, Pv-AMA-1 induced an increased production of MIP-1alpha/CCL3 and decreased production of TARC/CCL17 levels in both dendritic cells (DCs) and peripheral blood mononuclear cells (PBMCs). Finally, a significant pro-inflammatory response was elicited by Pv-AMA-1-stimulated PBMCs. These results suggest that the recombinant vaccine candidate Pv-AMA-1 may play a direct role on innate immune response and might be involved in parasite destruction.


Asunto(s)
Antígenos de Protozoos/inmunología , Inmunidad Innata , Vacunas contra la Malaria/inmunología , Malaria Vivax/inmunología , Proteínas de la Membrana/inmunología , Proteína 1 de Superficie de Merozoito/inmunología , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Vacunas Sintéticas/inmunología , Adulto , Animales , Antígenos de Protozoos/genética , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Activación de Linfocitos , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/genética , Malaria Vivax/parasitología , Malaria Vivax/prevención & control , Proteínas de la Membrana/genética , Proteína 1 de Superficie de Merozoito/genética , Proteínas Protozoarias/genética , Vacunas Sintéticas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA