RESUMEN
Oncogenic transformation is associated with profound changes in cellular metabolism, but whether tracking these can improve disease stratification or influence therapy decision-making is largely unknown. Using the iKnife to sample the aerosol of cauterized specimens, we demonstrate a new mode of real-time diagnosis, coupling metabolic phenotype to mutant PIK3CA genotype. Oncogenic PIK3CA results in an increase in arachidonic acid and a concomitant overproduction of eicosanoids, acting to promote cell proliferation beyond a cell-autonomous manner. Mechanistically, mutant PIK3CA drives a multimodal signaling network involving mTORC2-PKCζ-mediated activation of the calcium-dependent phospholipase A2 (cPLA2). Notably, inhibiting cPLA2 synergizes with fatty acid-free diet to restore immunogenicity and selectively reduce mutant PIK3CA-induced tumorigenicity. Besides highlighting the potential for metabolic phenotyping in stratified medicine, this study reveals an important role for activated PI3K signaling in regulating arachidonic acid metabolism, uncovering a targetable metabolic vulnerability that largely depends on dietary fat restriction. VIDEO ABSTRACT.
Asunto(s)
Ácido Araquidónico/análisis , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Eicosanoides/metabolismo , Animales , Ácido Araquidónico/metabolismo , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Citosol/metabolismo , Eicosanoides/fisiología , Activación Enzimática , Femenino , Humanos , Metabolismo de los Lípidos/fisiología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasas A2/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is a fundamental process that controls protein function and intracellular signaling. Failure of phospho-control accounts for many human diseases. While a kinase phosphorylates multiple substrates, a substrate is often phosphorylated by multiple kinases. This renders phospho-control at the substrate level challenging, as it requires inhibition of multiple kinases, which would thus affect other kinase substrates. Here, we describe the development and application of the affinity-directed phosphatase (AdPhosphatase) system for targeted dephosphorylation of specific phospho-substrates. By deploying the Protein Phosphatase 1 or 2A catalytic subunits conjugated to an antigen-stabilized anti-GFP nanobody, we can promote the dephosphorylation of two independent phospho-proteins, FAM83D or ULK1, knocked in with GFP-tags using CRISPR-Cas9, with exquisite specificity. By redirecting protein phosphatases to neo-substrates through nanobody-mediated proximity, AdPhosphatase can alter the phospho-status and function of target proteins and thus, offers a new modality for potential drug discovery approaches.
Asunto(s)
Proteínas Quinasas , Proteína Fosfatasa 2 , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2/metabolismo , Especificidad por Sustrato , Monoéster Fosfórico Hidrolasas/metabolismoRESUMEN
The majority of mutations identified in patients with amelogenesis imperfecta have been mapped to FAM83H. As FAM83H expression is not limited to the enamel, how FAM83H contributes to amelogenesis is still largely unknown. We previously reported that members of the FAM83 family of proteins interact with and regulate the subcellular distribution of the promiscuous serine-threonine protein kinase CK1 family, through their shared N-terminal DUF1669 domains. FAM83H co-localises with CK1 isoforms to speckle-like structures in both the cytoplasm and nucleus. In this report, we show FAM83H, unlike other FAM83 proteins, interacts and colocalises with NCK1/2 tyrosine kinase adaptor proteins. This interaction is mediated by proline-rich motifs within the C-terminus of FAM83H, specifically interacting with the second and third SH3 domains of NCK1/2. Moreover, FAM83H pathogenic AI mutant proteins, which trigger C-terminal truncations of FAM83H, retain their interactions with CK1 isoforms but lose interaction with NCK1/2. These AI mutant FAM83H proteins acquire a nuclear localisation, and recruit CK1 isoforms to the nucleus where CK1 retains its kinase activity. As understanding the constituents of the FAM83H-localised speckles may hold the key to unravelling potential substrates of FAM83H-associated CK1 substrates, we employed a TurboID-based proximity labelling approach and uncovered several proteins including Iporin and BAG3 as potential constituents of the speckles.
Asunto(s)
Amelogénesis Imperfecta/genética , Mutación/genética , Proteínas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Proteínas Oncogénicas/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas/química , Proteínas/metabolismoRESUMEN
Conserved protein kinases with core cellular functions have been frequently redeployed during metazoan evolution to regulate specialized developmental processes. The Ser/Arg (SR)-rich splicing factor (SRSF) protein kinase (SRPK), which is implicated in splicing regulation, is one such conserved eukaryotic kinase. Surprisingly, we show that SRPK has acquired the capacity to control a neurodevelopmental ubiquitin signaling pathway. In mammalian embryonic stem cells and cultured neurons, SRPK phosphorylates Ser-Arg motifs in RNF12/RLIM, a key developmental E3 ubiquitin ligase that is mutated in an intellectual disability syndrome. Processive phosphorylation by SRPK stimulates RNF12-dependent ubiquitylation of nuclear transcription factor substrates, thereby acting to restrain a neural gene expression program that is aberrantly expressed in intellectual disability. SRPK family genes are also mutated in intellectual disability disorders, and patient-derived SRPK point mutations impair RNF12 phosphorylation. Our data reveal unappreciated functional diversification of SRPK to regulate ubiquitin signaling that ensures correct regulation of neurodevelopmental gene expression.
Asunto(s)
Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Discapacidad Intelectual/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/metabolismo , Mutación/genética , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteolisis , Especificidad por Sustrato , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Background: Two recessive mutations in the FAM83G gene, causing A34E and R52P amino acid substitutions in the DUF1669 domain of the PAWS1 protein, are associated with palmoplantar keratoderma (PPK) in humans and dogs respectively. We have previously reported that PAWS1 associates with the Ser/Thr protein kinase CK1α through the DUF1669 domain to mediate canonical Wnt signalling. Methods: Co-immunoprecipitation was used to investigate possible changes to PAWS1 interactors caused by the mutations. We also compared the stability of wild-type and mutant PAWS1 in cycloheximide-treated cells. Effects on Wnt signalling were determined using the TOPflash luciferase reporter assay in U2OS cells expressing PAWS1 mutant proteins. The ability of PAWS1 to induce axis duplication in Xenopus embryos was also tested. Finally, we knocked-in the A34E mutation at the native gene locus and measured Wnt-induced AXIN2 gene expression by RT-qPCR. Results: We show that these PAWS1 A34E and PAWS1 R52P mutants fail to interact with CK1α but, like the wild-type protein, do interact with CD2AP and SMAD1. Like cells carrying a PAWS1 F296A mutation, which also abolishes CK1α binding, cells carrying the A34E and R52P mutants respond poorly to Wnt signalling to an extent resembling that observed in FAM83G gene knockout cells. Consistent with this observation, these mutants, in contrast to the wild-type protein, fail to induce axis duplication in Xenopus embryos. We also found that the A34E and R52P mutant proteins are less abundant than the native protein and appear to be less stable, both when overexpressed in FAM83G-knockout cells and when knocked-in at the native FAM83G locus. Ala 34 of PAWS1 is conserved in all FAM83 proteins and mutating the equivalent residue in FAM83H (A31E) also abolishes interaction with CK1 isoforms. Conclusions: We propose that mutations in PAWS1 cause PPK pathogenesis through disruption of the CK1α interaction and attenuation of Wnt signalling.
RESUMEN
Analyzing lipid composition and distribution within the brain is important to study white matter pathologies that present focal demyelination lesions, such as multiple sclerosis. Some lesions can endogenously re-form myelin sheaths. Therapies aim to enhance this repair process in order to reduce neurodegeneration and disability progression in patients. In this context, a lipidomic analysis providing both precise molecular classification and well-defined localization is crucial to detect changes in myelin lipid content. Here we develop a correlated heterospectral lipidomic (HSL) approach based on coregistered Raman spectroscopy, desorption electrospray ionization mass spectrometry (DESI-MS), and immunofluorescence imaging. We employ HSL to study the structural and compositional lipid profile of demyelination and remyelination in an induced focal demyelination mouse model and in multiple sclerosis lesions from patients ex vivo. Pixelwise coregistration of Raman spectroscopy and DESI-MS imaging generated a heterospectral map used to interrelate biomolecular structure and composition of myelin. Multivariate regression analysis enabled Raman-based assessment of highly specific lipid subtypes in complex tissue for the first time. This method revealed the temporal dynamics of remyelination and provided the first indication that newly formed myelin has a different lipid composition compared to normal myelin. HSL enables detailed molecular myelin characterization that can substantially improve upon the current understanding of remyelination in multiple sclerosis and provides a strategy to assess remyelination treatments in animal models.
RESUMEN
The predominant surface proteins of biofilm and planktonic Actinomyces naeslundii, a primary colonizer of the tooth surface, were examined. Seventy-nine proteins (the products of 52 genes) were identified in biofilm cells, and 30 of these, including adhesins, chaperones, and stress-response proteins, were significantly up-regulated relative to planktonic cells.