Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Mem Inst Oswaldo Cruz ; 119: e220242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38198296

RESUMEN

BACKGROUND: Eosinophils are granulocytes that rapidly increase frequency in the bloodstream during helminthic infections and allergic responses. They are found in tissue infected by Leishmania during early disease, but their role during infection is not entirely understood. OBJECTIVES: We aim to compare the disease due to Leishmania amazonensis in BALB/c and Δdbl-GATA1 mice, which lack eosinophils. METHODS: BALB/c and Δdbl-GATA1 mice infected with L. amazonensis were observed for several weeks. The parasite load and dissemination pattern were assessed. FINDINGS: The Δdbl-GATA1 mice developed an anticipated dissemination of L. amazonensis and a worsening disease. No differences were found in the lesion development or the parasite load in the footpad among Δdbl-GATA1 mice and BALB/c eight weeks after infection. However, nine weeks after infection, massive growth of metastatic lesions appeared in several parts of the skin in Δdbl-GATA1 mice, weeks earlier than BALB/c. We observed increased parasites in the bloodstream, probably an essential dissemination route. Thirteen weeks after infection, metastatic lesions were found in all Δdbl-GATA1 mice. MAIN CONCLUSION: These results suggest a protective role of eosinophils in delaying the disease caused by L. amazonensis, although several limitations of this mice strain must be considered.


Asunto(s)
Leishmania mexicana , Leishmania , Animales , Ratones , Eosinófilos , Carga de Parásitos , Piel
2.
Mem Inst Oswaldo Cruz ; 119: e230243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775551

RESUMEN

BACKGROUND: Leishmania tarentolae is a non-pathogenic species found in lizards representing an important model for Leishmania biology. However, several aspects of this Sauroleishmania remain unknown to explain its low level of virulence. OBJECTIVES: We reported several aspects of L. tarentolae biology including glycoconjugates, proteolytic activities and metabolome composition in comparison to pathogenic species (Leishmania amazonensis, Leishmania braziliensis, Leishmania infantum and Leishmania major). METHODS: Parasites were cultured for extraction and purification of lipophosphoglycan (LPG), immunofluorescence probing with anti-gp63 and resistance against complement. Parasite extracts were also tested for proteases activity and metabolome composition. FINDINGS: Leishmania tarentolae does not express LPG on its surface. It expresses gp63 at lower levels compared to pathogenic species and, is highly sensitive to complement-mediated lysis. This species also lacks intracellular/extracellular activities of proteolytic enzymes. It has metabolic differences with pathogenic species, exhibiting a lower abundance of metabolites including ABC transporters, biosynthesis of unsaturated fatty acids and steroids, TCA cycle, glycine/serine/threonine metabolism, glyoxylate/dicarboxylate metabolism and pentose-phosphate pathways. MAIN CONCLUSIONS: The non-pathogenic phenotype of L. tarentolae is associated with alterations in several biochemical and molecular features. This reinforces the need of comparative studies between pathogenic and non-pathogenic species to elucidate the molecular mechanisms of virulence during host-parasite interactions.


Asunto(s)
Glicoconjugados , Leishmania , Metaboloma , Péptido Hidrolasas , Leishmania/enzimología , Péptido Hidrolasas/metabolismo , Animales , Glicoesfingolípidos/metabolismo , Proteínas del Sistema Complemento
3.
Mem Inst Oswaldo Cruz ; 118: e230071, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37729273

RESUMEN

BACKGROUND: Leishmania RNA virus 1 (LRV1) is commonly found in South American Leishmania parasites belonging to the subgenus Viannia, whereas Leishmania RNA virus 2 (LRV2) was previously thought to be restricted to the Old-World pathogens of the subgenus Leishmania. OBJECTIVES: In this study, we investigated the presence of LRV2 in strains of Leishmania (L.) infantum, the causative agent of visceral leishmaniasis (VL), originating from different hosts, clinical forms, and geographical regions. METHODS: A total of seventy-one isolates were screened for LRV2 using semi-nested reverse transcription-polymerase chain reaction (RT-PCR) targeting the RNA-dependent RNA polymerase (RdRp) gene. FINDINGS: We detected LRV2 in two L. infantum isolates (CUR268 and HP-EMO) from canine and human cases, respectively. MAIN CONCLUSIONS: To the best of our knowledge, this is the first detection of LRV2 in the New World.


Asunto(s)
Leishmania infantum , Leishmaniasis Visceral , Humanos , Animales , Perros , Leishmania infantum/genética , Leishmaniasis Visceral/veterinaria , Brasil , ARN Polimerasa Dependiente del ARN
4.
FASEB J ; 35(5): e21509, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33813781

RESUMEN

Extracellular adenosine plays important roles in modulating the immune responses. We have previously demonstrated that infection of dendritic cells (DC) by Leishmania amazonensis leads to increased expression of CD39 and CD73 and to the selective activation of the low affinity A2B receptors (A2B R), which contributes to DC inhibition, without involvement of the high affinity A2A R. To understand this apparent paradox, we now characterized the alterations of both adenosine receptors in infected cells. With this aim, bone marrow-derived DC from C57BL/6J mice were infected with metacyclic promastigotes of L. amazonensis. Fluorescence microscopy revealed that L. amazonensis infection stimulates the recruitment of A2B R, but not of A2A R, to the surface of infected DC, without altering the amount of mRNA or the total A2B R density, an effect dependent on lipophosphoglycan (LPG). Log-phase promastigotes or axenic amastigotes of L. amazonensis do not stimulate A2B R recruitment. A2B R clusters are localized in caveolin-rich lipid rafts and the disruption of these membrane domains impairs A2B R recruitment and activation. More importantly, our results show that A2B R co-localize with CD39 and CD73 forming a "purinergic cluster" that allows for the production of extracellular adenosine in close proximity with these receptors. We conclude that A2B R activation by locally produced adenosine constitutes an elegant and powerful evasion mechanism used by L. amazonensis to down-modulate the DC activation.


Asunto(s)
5'-Nucleotidasa/metabolismo , Antígenos CD/metabolismo , Apirasa/metabolismo , Caveolina 1/metabolismo , Células Dendríticas/inmunología , Leishmaniasis/inmunología , Microdominios de Membrana/inmunología , Receptor de Adenosina A2B/metabolismo , Animales , Células Dendríticas/metabolismo , Células Dendríticas/parasitología , Células Dendríticas/patología , Inmunidad , Inmunomodulación , Leishmania/inmunología , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Leishmaniasis/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/parasitología , Macrófagos/patología , Masculino , Microdominios de Membrana/parasitología , Microdominios de Membrana/patología , Ratones , Ratones Endogámicos C57BL
5.
Mem Inst Oswaldo Cruz ; 117: e220065, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35920504

RESUMEN

BACKGROUND: Leishmania (Mundinia) enriettii is a species commonly found in the guinea pig, Cavia porcellus. Although it is a dermotropic species, there is still an uncertainty regarding its ability to visceralise during Leishmania life cycle. OBJECTIVE: Here, we investigated the ability of L. enriettii (strain L88) to visceralise in lungs, trachea, spleen, and liver of C. porcellus, its natural vertebrate host. METHODS: Animals were infected sub-cutaneously in the nose and followed for 12 weeks using histological (hematoxilin-eosin) and molecular tools (polymerase chain reaction-restriction fragment length polymorphism - PCR-RFLP). To isolate parasite from C. porcellus, animals were experimentally infected for viscera removal and PCR typing targeting hsp70 gene. FINDINGS: Histological analysis revealed intense and diffuse inflammation with the presence of amastigotes in the trachea, lung, and spleen up to 12 weeks post-infection (PI). Molecular analysis of paraffin-embedded tissues detected parasite DNA in the trachea and spleen between the 4th and 8th weeks PI. At the 12th PI, no parasite DNA was detected in any of the organs. To confirm that the spleen could serve as a temporary site for L. enriettii, we performed additional in vivo experiments. During 6th week PI, the parasite was isolated from the spleen confirming previous histopathological and PCR observations. MAIN CONCLUSION: Leishmania enriettii (strain L88) was able to visceralise in the trachea, lung, and spleen of C. porcellus.


Asunto(s)
Leishmania enriettii , Leishmania , Animales , Cobayas , Leishmania/genética , Pulmón , Bazo , Tráquea
6.
Cell Biol Int ; 45(5): 1060-1071, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33448518

RESUMEN

Free living amoeba of the genus Acanthamoeba are opportunist protozoan involved in corneal, systemic, and encephalic infections in humans. Most of the mechanisms underlying intraspecies variations and pathogenicity are still unknown. Recently, the release of extracellular vesicles (EVs) by Acanthamoeba was reported. However, comparative characterization of EVs from distinct strains is not available. The aim of this study was to evaluate EVs produced by Acanthamoeba from different genotypes, comparing their proteases profile and immunomodulatory properties. EVs from four environmental or clinical strains (genotypes T1, T2, T4, and T11) were obtained by ultracentrifugation, quantitated by nanoparticle tracking analysis and analyzed by scanning and transmission electron microscopy. Proteases profile was determined by zymography and functional properties of EVs (measure of nitrite and cytokine production) were determined after peritoneal macrophage stimulation. Despite their genotype, all strains released EVs and no differences in size and/or concentration were detected. EVs exhibited a predominant activity of serine proteases (pH 7.4 and 3.5), with higher intensity in T4 and T1 strains. EVs from the environmental, nonpathogenic T11 strain exhibited a more proinflammatory profile, inducing higher levels of Nitrite, tumor necrosis factor alpha and interleukin-6 via TLR4/TLR2 than those strains with pathogenic traits (T4, T1, and T2). Preincubation with EVs treated with protease inhibitors or heating drastically decreased nitrite concentration production in macrophages. Those data suggest that immunomodulatory effects of EVs may reflect their pathogenic potential depending on the Acanthamoeba strains and are dependent on protease integrity.


Asunto(s)
Acanthamoeba/genética , Acanthamoeba/metabolismo , Vesículas Extracelulares/inmunología , Acanthamoeba/clasificación , Animales , Vesículas Extracelulares/fisiología , Femenino , Genotipo , Factores Inmunológicos/inmunología , Factores Inmunológicos/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
7.
An Acad Bras Cienc ; 93(3): e20200254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33950136

RESUMEN

Lutzomyia longipalpis is the most important vector of Leishmania infantum, the etiological agent of visceral leishmaniasis (VL) in the New World. It is a permissive vector susceptible to infection with several Leishmania species. One of the advantages that favors the study of this sand fly is the possibility of colonization in the laboratory. For this reason, several researchers around the world use this species as a model for different subjects including biology, insecticides testing, host-parasite interaction, physiology, genetics, proteomics, molecular biology, and saliva among others. In 2003, we published our first review (Soares & Turco 2003) on this vector covering several aspects of Lu. longipalpis. This current review summarizes what has been published between 2003-2020. During this period, modern approaches were incorporated following the development of more advanced and sensitive techniques to assess this sand fly.


Asunto(s)
Leishmania infantum , Leishmaniasis Visceral , Psychodidae , Animales , Insectos Vectores , Saliva
8.
Exp Parasitol ; 203: 23-29, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31150654

RESUMEN

In Brazil, Leishmania amazonensis is one of the etiological agents of tegumentary leishmaniasis and can cause a wide spectrum of diseases in humans, resulting in cutaneous, mucosal, diffuse, and even visceral leishmaniasis. Besides, this species has also been reported to affect dogs, causing typical symptoms of visceral disease. Unfortunately, the diagnostic of the Leishmania species is not routinely performed due to the difficulties of the available methods. In view of this, different molecular methods have been used in an attempt to solve the problem of diagnosis. Loop-mediated isothermal amplification (LAMP) is a relatively new nucleic acid amplification method, which has been successfully applied in the diagnosis of Leishmania spp. infections. However, this is the first work that standardizes a specific LAMP reaction for L. amazonensis. The set of primers selected were designed from the kDNA minicircle sequence of the L. amazonensis (GenBank: U19810.1). The LAMP assay developed in the present study showed 100% specificity and 89% sensitivity when compared with conventional PCR and was more sensitive than qPCR. In addition, the LAMP reaction developed here was able to amplify a qPCR sample with a parasite load of only 28 parasites in 50 ng of DNA. Consequently, considering the LAMP reaction specific to L. amazonensis and several advantages of the method (such as high efficiency, sensitivity and specificity), we believe that this reaction can be used as a promising diagnostic tool in clinical practice, field studies, and research.


Asunto(s)
Leishmania mexicana/aislamiento & purificación , Leishmaniasis Cutánea/diagnóstico , Piel/parasitología , Animales , Secuencia de Bases , Colorimetría , Cricetinae , ADN de Cinetoplasto/química , ADN de Cinetoplasto/genética , ADN Protozoario/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Femenino , Leishmania mexicana/genética , Leishmaniasis Cutánea/parasitología , Masculino , Mesocricetus , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Tinción con Nitrato de Plata
9.
Mem Inst Oswaldo Cruz ; 114: e190111, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31433006

RESUMEN

BACKGROUND: In addition to the limited therapeutic arsenal and the side effects of antileishmanial agents, drug resistance hinders disease control. In Brazil, Leishmania braziliensis causes atypical (AT) tegumentary leishmaniasis lesions, frequently refractory to treatment. OBJECTIVES: The main goal of this study was to characterise antimony (Sb)-resistant (SbR) L. braziliensis strains obtained from patients living in Xakriabá indigenous community, Minas Gerais, Brazil. METHODS: The aquaglyceroporin 1-encoding gene (AQP1) from L. braziliensis clinical isolates was sequenced, and its function was evaluated by hypo-osmotic shock. mRNA levels of genes associated with Sb resistance were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Atomic absorption was used to measure Sb uptake. FINDINGS: Although clinical isolates presented delayed recovery time in hypo-osmotic shock, AQP1 function was maintained. Isolate 340 accumulated less Sb than all other isolates, supporting the 65-fold downregulation of AQP1 mRNA levels. Both 330 and 340 isolates upregulated antimony resistance marker (ARM) 56/ARM58 and multidrug resistant protein A (MRPA); however, only ARM58 upregulation was an exclusive feature of SbR field isolates. CA7AE seemed to increase drug uptake in L. braziliensis and represented a tool to study the role of glycoconjugates in Sb transport. MAIN CONCLUSIONS: There is a clear correlation between ARM56/58 upregulation and Sb resistance in AT-harbouring patients, suggesting the use of these markers as potential indicators to help the treatment choice and outcome, preventing therapeutic failure.


Asunto(s)
Antimonio/farmacología , Resistencia a Medicamentos/genética , Leishmania braziliensis/efectos de los fármacos , Leishmaniasis Cutánea/parasitología , Proteínas Protozoarias/genética , Tripanocidas/farmacología , Acuagliceroporinas/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Humanos , Leishmania braziliensis/genética , Pruebas de Sensibilidad Parasitaria , Proteínas Protozoarias/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Mem Inst Oswaldo Cruz ; 113(3): 202-205, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29412360

RESUMEN

BACKGROUND: Lutzomyia umbratilis, the vector for Leishmania guyanensis in northern South America, has been found naturally infected with L. guyanensis only in areas north of the Negro and Amazon rivers. While populations of this sand fly species are also found in areas south of these rivers, these populations have never been reported to be infected and/or transmitting L. guyanensis. However, no studies on the corresponding host-parasite interactions are available. OBJECTIVES: This study evaluated the interaction between Lu. guyanensis promastigotes and field-collected Lu. umbratilis sand flies from Rio Preto da Eva and Manacapuru, which are located to the north and south, respectively, of the Negro River. METHODS: Procyclic and metacyclic attachment was quantified using an in vitro system. FINDINGS: Low attachment of parasites to the midguts of insects collected from Manacapuru was detected. Conversely, greater binding of metacyclic parasites was observed in the midguts of insects collected from Rio Preto da Eva, and this attachment was more pronounced than that observed for procyclics (p < 0.03). MAIN CONCLUSIONS: The Lu. umbratilis population from an area south of the Negro River has lower in vitro interaction with L. guyanensis. The higher attachment of L. guyanensis to midguts of insects from Rio Preto da Eva may suggest better vector competence. These findings are in accordance with previously reported epidemiological information of American cutaneous leishmaniasis (ACL) transmission in the Amazon.


Asunto(s)
Sistema Digestivo/parasitología , Interacciones Huésped-Parásitos/fisiología , Leishmania guyanensis/fisiología , Psychodidae/parasitología , Animales , Brasil , Femenino , Geografía , Psychodidae/clasificación , Ríos
11.
Mem Inst Oswaldo Cruz ; 113(5): e170333, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29513819

RESUMEN

BACKGROUND Leishmania major is an Old World species causing cutaneous leishmaniasis and is transmitted by Phlebotomus papatasi and Phlebotomus duboscqi. In Brazil, two isolates from patients who never left the country were characterised as L. major-like (BH49 and BH121). Using molecular techniques, these isolates were indistinguishable from the L. major reference strain (FV1). OBJECTIVES We evaluated the lipophosphoglycans (LPGs) of the strains and their behaviour in Old and New World sand fly vectors. METHODS LPGs were purified, and repeat units were qualitatively evaluated by immunoblotting. Experimental in vivo infection with L. major-like strains was performed in Lutzomyia longipalpis (New World, permissive vector) and Ph. papatasi (Old World, restrictive or specific vector). FINDINGS The LPGs of both strains were devoid of arabinosylated side chains, whereas the LPG of strain BH49 was more galactosylated than that of strain BH121. All strains with different levels of galactosylation in their LPGs were able to infect both vectors, exhibiting colonisation of the stomodeal valve and metacyclogenesis. The BH121 strain (less galactosylated) exhibited lower infection intensity compared to BH49 and FV1 in both vectors. MAIN CONCLUSIONS Intraspecific variation in the LPG of L. major-like strains occur, and the different galactosylation levels affected interactions with the invertebrate host.


Asunto(s)
Galactosa/metabolismo , Glicoesfingolípidos/metabolismo , Insectos Vectores/fisiología , Leishmania major/fisiología , Phlebotomus/parasitología , Psychodidae/parasitología , Animales , Glicoesfingolípidos/química , Interacciones Huésped-Patógeno , Insectos Vectores/química , Leishmania major/química , Especificidad de la Especie
12.
J Infect Dis ; 210(4): 656-66, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24634497

RESUMEN

Neutrophils are rapidly recruited to the site of Leishmania infection and play an active role in capturing and killing parasites. They are the main source of leukotriene B4 (LTB4), a potent proinflammatory lipid mediator. However, the role of LTB4 in neutrophil infection by Leishmania amazonensis is not clear. In this study, we show that L. amazonensis or its lipophosphoglycan can induce neutrophil activation, degranulation, and LTB4 production. Using pharmacological inhibitors of leukotriene synthesis, our findings reveal an LTB4-driven autocrine/paracrine regulatory effect. In particular, neutrophil-derived LTB4 controls L. amazonensis killing, degranulation, and reactive oxygen species production. In addition, L. amazonensis infection induces an early increase in Toll-like receptor 2 expression, which facilitates parasite internalization. Nuclear factor kappa B (NFkB) pathway activation represents a required upstream event for L. amazonensis-induced LTB4 synthesis. These leishmanicidal mechanisms mediated by neutrophil-derived LTB4 act through activation of its receptor, B leukotriene receptor 1 (BLT1).


Asunto(s)
Leishmania mexicana/metabolismo , Leishmaniasis Cutánea/metabolismo , Leucotrieno B4/metabolismo , Neutrófilos/metabolismo , Antígenos de Superficie/metabolismo , Humanos , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Leucotrieno B4/metabolismo , Receptor Toll-Like 2/metabolismo
13.
Int J Parasitol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626865

RESUMEN

The interaction between pathogens and vectors' physiology can impact parasite transmission. Studying this interaction at the molecular level can help in developing control strategies. We study leishmaniases, diseases caused by Leishmania parasites transmitted by sand fly vectors, posing a significant global public health concern. Lipophosphoglycan (LPG), the major surface glycoconjugate of Leishmania, has been described to have several roles throughout the parasite's life cycle, both in the insect and vertebrate hosts. In addition, the sand fly midgut possesses a rich microbiota expressing lipopolysaccharides (LPS). However, the effect of LPG and LPS on the gene expression of sand fly midgut proteins or immunity effectors has not yet been documented. We experimentally fed Lutzomyia longipalpis and Phlebotomus papatasi sand flies with blood containing purified LPG from Leishmania infantum, Leishmania major, or LPS from Escherichia coli. The effect on the expression of genes encoding gut proteins galectin and mucin, digestive enzymes trypsin and chymotrypsin, and antimicrobial peptides (AMPs) attacin and defensins was assessed by quantitative PCR (qPCR). The gene expression of a mucin-like protein in L. longipalpis was increased by L. infantum LPG and E. coli LPS. The gene expression of a galectin was increased in L. longipalpis by L. major LPG, and in P. papatasi by E. coli LPS. Nevertheless, the gene expression of trypsins and chymotrypsins did not significantly change. On the other hand, both L. infantum and L. major LPG significantly enhanced expression of the AMP attacin in both sand fly species and defensin in L. longipalpis. In addition, E. coli LPS increased the expression of attacin and defensin in L. longipalpis. Our study showed that Leishmania LPG and E. coli LPS differentially modulate the expression of sand fly genes involved in gut maintenance and defence. This suggests that the glycoconjugates from microbiota or Leishmania may increase the vector's immune response and the gene expression of a gut coating protein in a permissive vector.

14.
Int J Parasitol ; 54(8-9): 391-400, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663543

RESUMEN

Nearly all aerobic organisms are equipped with catalases, powerful enzymes scavenging hydrogen peroxide and facilitating defense against harmful reactive oxygen species. In trypanosomatids, this enzyme was not present in the common ancestor, yet it had been independently acquired by different lineages of monoxenous trypanosomatids from different bacteria at least three times. This observation posited an obvious question: why was catalase so "sought after" if many trypanosomatid groups do just fine without it? In this work, we analyzed subcellular localization and function of catalase in Leptomonas seymouri. We demonstrated that this enzyme is present in the cytoplasm and a subset of glycosomes, and that its cytoplasmic retention is H2O2-dependent. The ablation of catalase in this parasite is not detrimental in vivo, while its overexpression resulted in a substantially higher parasite load in the experimental infection of Dysdercus peruvianus. We propose that the capacity of studied flagellates to modulate the catalase activity in the midgut of its insect host facilitates their development and protects them from oxidative damage at elevated temperatures.


Asunto(s)
Catalasa , Peróxido de Hidrógeno , Trypanosomatina , Catalasa/metabolismo , Animales , Trypanosomatina/enzimología , Trypanosomatina/genética , Peróxido de Hidrógeno/metabolismo , Citoplasma , Microcuerpos/metabolismo
15.
Biochim Biophys Acta ; 1820(9): 1354-65, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22093608

RESUMEN

BACKGROUND: Protozoan parasites of the genus Leishmania cause a number of important diseases in humans and undergo a complex life cycle, alternating between a sand fly vector and vertebrate hosts. The parasites have a remarkable capacity to avoid destruction in which surface molecules are determinant for survival. Amongst the many surface molecules of Leishmania, the glycoconjugates are known to play a central role in host-parasite interactions and are the focus of this review. SCOPE OF THE REVIEW: The most abundant and best studied glycoconjugates are the Lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs). This review summarizes the main studies on structure and biological functions of these molecules in New World Leishmania species. MAJOR CONCLUSIONS: LPG and GIPLs are complex molecules that display inter- and intraspecies polymorphisms. They are key elements for survival inside the vector and to modulate the vertebrate immune response during infection. GENERAL SIGNIFICANCE: Most of the studies on glycoconjugates focused on Old World Leishmania species. Here, it is reported some of the studies involving New World species and their biological significance on host-parasite interaction. This article is part of a Special Issue entitled Glycoproteomics.


Asunto(s)
Glicoconjugados/fisiología , Glicoesfingolípidos/genética , Glicosilfosfatidilinositoles/genética , Interacciones Huésped-Parásitos , Leishmania , Leishmaniasis Cutánea/genética , Leishmaniasis Cutánea/parasitología , Animales , Secuencia de Carbohidratos , Glicoconjugados/análisis , Glicoconjugados/genética , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Humanos , Leishmania/química , Leishmania/genética , Leishmania/metabolismo , Leishmania/fisiología , Modelos Biológicos , Datos de Secuencia Molecular , Polimorfismo Genético/fisiología , Especificidad de la Especie
16.
Pathogens ; 12(2)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36839445

RESUMEN

We previously showed that L. (Leishmania) amazonensis promastigotes and amastigotes of the PH8 strain generated larger lesions in mice than LV79, and that lesion-derived amastigotes from the two strains differ in their proteomes. We recently reported that PH8 promastigotes are more phagocytized by macrophages. Promastigotes' membrane-enriched proteomes showed several differences, and samples of each strain clustered based on proteomes. In this paper, we show phenotypic differences between PH8 and LV79 promastigotes that may explain the higher virulence of PH8. We compared in vitro macrophage infections by day 4 (early) and day 6 (late stationary phase) cultures, resistance to complement, and LPG characteristics. PH8 promastigotes showed a higher infectivity and were more resistant to murine complement. LPG was different between the strains, which may influence the interaction with macrophages and survival to complement. We compared the infection of the permissive vector Lutzomyia longipalpis. PH8 was more abundant in the vector's gut 72 h after feeding, which is a moment where blood digestion is finished and the parasites are exposed to the gut environment. Our results indicate that PH8 promastigotes are more infective, more resistant to complement, and infect the permissive vector more efficiently. These data suggest that PH8 is probably better adapted to the sand fly and more prone to survive in the vertebrate host.

17.
Vet Parasitol Reg Stud Reports ; 41: 100881, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37208087

RESUMEN

Leishmania infantum infections have long been described in humans and dogs worldwide, but characterization of equine cases remains scarce. We describe the clinical evolution of a natural L. infantum infection to contribute to the diagnostic knowledge and epidemiology of equine leishmaniasis (EL). An auction-acquired four-year-old Mangalarga Marchador mare from Pernambuco state, presented a few subcutaneous nodules on the head and neck upon arrival at the purchaser's stud at Bahia state, in November of 2019. They progressed to multiple ulcerated and non-ulcerated nodules and spread to both right limbs in seven weeks. Hematology revealed anemia, lymphocytosis, monocytosis, and elevated plasma fibrinogen. Histopathology of the biopsied nodules identified a granulomatous dermatitis with macrophages containing Leishmania amastigotes. PCR detected Leishmania in skin lesions, but not in blood or spleen aspirate samples; ITS1 PCR-RFLP and DNA sequencing confirmed L. infantum species. A topical antiseptic and insect-repellent therapy and a monthly follow-up were established. All lesions improved progressively, without specific anti-Leishmania treatment, and 14 months later there was a consistent resolution. This first description of EL by L. infantum in an endemic area is relevant to emphasize the need for epidemiological studies, and to enhance clinicians' awareness for differential diagnosis.


Asunto(s)
Enfermedades de los Perros , Enfermedades de los Caballos , Leishmania infantum , Leishmaniasis Visceral , Leishmaniasis , Animales , Caballos , Humanos , Perros , Leishmania infantum/genética , Brasil/epidemiología , Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/veterinaria , Leishmaniasis Visceral/epidemiología , Enfermedades de los Perros/epidemiología , Leishmaniasis/veterinaria , Enfermedades de los Caballos/diagnóstico , Enfermedades de los Caballos/epidemiología
18.
Microorganisms ; 11(12)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38138117

RESUMEN

Leishmania spp. is the aetiologic agent of leishmaniasis, a disease endemic in several developing countries. The parasite expresses and secretes several virulence factors that subvert the macrophage function and immune response. Extracellular vesicles (EVs) can carry molecules of the parasites that show immunomodulatory effects on macrophage activation and disease progression. In the present work, we detected a significantly higher expression of lpg3 and gp63 genes in Leishmania amazonensis promastigotes recovered after successive experimental infections (IVD-P) compared to those cultured for a long period (LT-P). In addition, we observed a significantly higher percentage of infection and internalized parasites in groups of macrophages infected with IVD-P. Macrophages previously treated with EVs from LT-P showed higher percentages of infection and production of inflammatory cytokines after the parasite challenge compared to the untreated ones. However, macrophages infected with parasites and treated with EVs did not reduce the parasite load. In addition, no synergistic effects were observed in the infected macrophages treated with EVs and reference drugs. In conclusion, parasites cultured for a long period in vitro and recovered from animals' infections, differently affected the macrophage response. Furthermore, EVs produced by these parasites affected the macrophage response in the early infection of these cells.

19.
J Extracell Biol ; 2(10): e117, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38939734

RESUMEN

Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.

20.
FASEB J ; 25(12): 4162-73, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21846836

RESUMEN

We investigated the type I interferon (IFN-1)/PKR axis in the outcome of the Leishmania (Leishmania) amazonensis infection, along with the underlying mechanisms that trigger and sustain this signaling pathway. Reporter assays of cell extracts from RAW-264.7 macrophages infected with L. (L.) amazonensis or HEK-293T cells cotransfected with TLR2 and PKR promoter constructions were employed. Primary macrophages of TLR2-knockout (KO) or IFNR-KO mice were infected, and the levels of PKR, IFN-1, and superoxide dismutase 1 (SOD1) transcript levels were investigated and compared. Immunohistochemical analysis of human biopsy lesions was evaluated for IFN-1 and PKR-positive cells. Leishmania infection increased the expression of PKR and IFN-ß on induction of PKR-promoter activity. The observed effects required the engagement of TLR2. TLR2-KO macrophages expressed low IFN-ß and PKR levels postinfection with a reduced parasite load. We also revealed the requirement of PKR signaling for Leishmania-induced IFN-1 expression, responsible for sustaining PKR expression and enhancing infection. Moreover, during infection, SOD1 transcripts increased and were also enhanced when IFN-1 was added to the cultures. Remarkably, SOD1 expression was abrogated in infected, dominant-negative PKR-expressing cells. Finally, lesions of patients with anergic diffuse cutaneous leishmaniasis exhibited higher levels of PKR/IFN-1-expressing cells compared to those with single cutaneous leishmaniasis. In summary, we demonstrated the mechanisms and relevance of the IFN-1/PKR axis in the Leishmania infection.


Asunto(s)
Interferón Tipo I/metabolismo , Leishmania mexicana , Leishmaniasis Cutánea/enzimología , Leishmaniasis Cutánea/inmunología , Receptor Toll-Like 2/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Glicoesfingolípidos/inmunología , Interacciones Huésped-Parásitos , Humanos , Leishmania mexicana/inmunología , Leishmania mexicana/patogenicidad , Leishmaniasis Cutánea/genética , Leishmaniasis Cutánea Difusa/enzimología , Leishmaniasis Cutánea Difusa/genética , Leishmaniasis Cutánea Difusa/inmunología , Macrófagos Peritoneales/enzimología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/parasitología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Regiones Promotoras Genéticas , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética , Transfección , eIF-2 Quinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA