Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Planta ; 258(2): 40, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37420105

RESUMEN

MAIN CONCLUSION: Expression levels of AtPP2-A3 and AtPP2-A8 are reduced in syncytia induced by Heterodera schachtii and decline of their expression levels decreases host susceptibility, whereas their overexpression promotes susceptibility to parasite. Plant-parasitic nematodes cause huge crop losses worldwide. Heterodera schachtii is a sedentary cyst-forming nematode that induces a feeding site called a syncytium via the delivery of secreted chemical substances (effectors) to host cells, which modulate host genes expression and phytohormone regulation patterns. Genes encoding the Nictaba-related lectin domain have been found among the plant genes with downregulated expression during the development of syncytia induced by H. schachtii in Arabidopsis thaliana roots. To investigate the role of two selected Nictaba-related genes in the plant response to beet cyst nematode parasitism, mutants and plants overexpressing AtPP2-A3 or AtPP2-A8 were infected, and promoter activity and protein localization were analyzed. In wild-type plants, AtPP2-A3 and AtPP2-A8 were expressed only in roots, especially in the cortex and rhizodermis. After nematode infection, their expression was switched off in regions surrounding a developing syncytium. Astonishingly, plants overexpressing AtPP2-A3 or AtPP2-A8 were more susceptible to nematode infection than wild-type plants, whereas mutants were less susceptible. Based on these results and changes in AtPP2-A3 and AtPP2-A8 expression patterns after treatments with different stress phytohormones, we postulate that the AtPP2-A3 and AtPP2-A8 genes play important roles in the defense response to beet cyst nematode infection.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Enfermedades de las Plantas , Tylenchoidea , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genes de Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Tylenchoidea/patogenicidad
2.
New Phytol ; 232(1): 318-331, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34133755

RESUMEN

Reactive oxygen species (ROS) generated in response to infections often activate immune responses in eukaryotes including plants. In plants, ROS are primarily produced by plasma membrane-bound NADPH oxidases called respiratory burst oxidase homologue (Rboh). Surprisingly, Rbohs can also promote the infection of plants by certain pathogens, including plant parasitic cyst nematodes. The Arabidopsis genome contains 10 Rboh genes (RbohA-RbohJ). Previously, we showed that cyst nematode infection causes a localised ROS burst in roots, mediated primarily by RbohD and RbohF. We also found that plants deficient in RbohD and RbohF (rbohD/F) exhibit strongly decreased susceptibility to cyst nematodes, suggesting that Rboh-mediated ROS plays a role in promoting infection. However, little information is known of the mechanism by which Rbohs promote cyst nematode infection. Here, using detailed genetic and biochemical analyses, we identified WALLS ARE THIN1 (WAT1), an auxin transporter, as a downstream target of Rboh-mediated ROS during parasitic infections. We found that WAT1 is required to modulate the host's indole metabolism, including indole-3-acetic acid levels, in infected cells and that this reprogramming is necessary for successful establishment of the parasite. In conclusion, this work clarifies a unique mechanism that enables cyst nematodes to use the host's ROS for their own benefit.


Asunto(s)
Proteínas de Arabidopsis , Quistes , Nematodos , Animales , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Indoles , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Nematodos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Plant Cell ; 30(12): 3058-3073, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30413655

RESUMEN

Successful biotrophic plant pathogens can divert host nutrition toward infection sites. Here we describe how the protist Plasmodiophora brassicae establishes a long-term feeding relationship with its host by stimulating phloem differentiation and phloem-specific expression of sugar transporters within developing galls. Development of galls in infected Arabidopsis (Arabidopsis thaliana) plants is accompanied by stimulation of host BREVIS RADIX, COTYLEDON VASCULAR PATTERN, and OCTOPUS gene expression leading to an increase in phloem complexity. We characterized how the arrest of this developmental reprogramming influences both the host and the invading pathogen. Furthermore, we found that infection leads to phloem-specific accumulation of SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS11 and 12 facilitating local distribution of sugars toward the pathogen. Utilizing Fourier-transform infrared microspectroscopy to monitor spatial distribution of carbohydrates, we found that infection leads to the formation of a strong physiological sink at the site of infection. High resolution metabolic and structural imaging of sucrose distributions revealed that sweet11 sweet12 double mutants are impaired in sugar transport toward the pathogen, delaying disease progression. This work highlights the importance of precise regulation of sugar partitioning for plant-pathogen interactions and the dependence of P brassicae's performance on its capacity to induce a phloem sink at the feeding site.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Floema/citología , Floema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Enfermedades de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
4.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208611

RESUMEN

Transcription factors are proteins that directly bind to regulatory sequences of genes to modulate and adjust plants' responses to different stimuli including biotic and abiotic stresses. Sedentary plant parasitic nematodes, such as beet cyst nematode, Heterodera schachtii, have developed molecular tools to reprogram plant cell metabolism via the sophisticated manipulation of genes expression, to allow root invasion and the induction of a sequence of structural and physiological changes in plant tissues, leading to the formation of permanent feeding sites composed of modified plant cells (commonly called a syncytium). Here, we report on the AtMYB59 gene encoding putative MYB transcription factor that is downregulated in syncytia, as confirmed by RT-PCR and a promoter pMyb59::GUS activity assays. The constitutive overexpression of AtMYB59 led to the reduction in A. thaliana susceptibility, as indicated by decreased numbers of developed females, and to the disturbed development of nematode-induced syncytia. In contrast, mutant lines with a silenced expression of AtMYB59 were more susceptible to this parasite. The involvement of ABA in the modulation of AtMYB59 gene transcription appears feasible by several ABA-responsive cis regulatory elements, which were identified in silico in the gene promoter sequence, and experimental assays showed the induction of AtMYB59 transcription after ABA treatment. Based on these results, we suggest that AtMYB59 plays an important role in the successful parasitism of H. schachtii on A. thaliana roots.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/parasitología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Factores de Transcripción/genética , Tylenchoidea/fisiología , Animales , Arabidopsis/ultraestructura , Resistencia a la Enfermedad/genética , Interacciones Huésped-Parásitos , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Raíces de Plantas/ultraestructura , Regiones Promotoras Genéticas
5.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919557

RESUMEN

Bacterial angular leaf spot disease (ALS) caused by Pseudomonas syringae pv. lachrymans (Psl) is one of the biological factors limiting cucumber open-field production. The goal of this study was to characterize cytological and transcriptomic response of cucumber to this pathogen. Plants of two inbred lines, B10 (susceptible) and Gy14 (resistant), were grown, and leaves were inoculated with highly virulent Psl strain 814/98 under growth chamber conditions. Microscopic and transcriptional evaluations were performed at three time points: before, 1 and 3 days post inoculation (dpi). Investigated lines showed distinct response to Psl. At 1 dpi bacterial colonies were surrounded by necrotized mesophyll cells. At 3 dpi, in the susceptible B10 line bacteria were in contact with degraded cells, whereas cells next to bacteria in the resistant Gy14 line were plasmolyzed, but apparently still alive and functional. Additionally, the level of H2O2 production was higher in resistant Gy14 plants than in B10 at both examined time points. In RNA sequencing more than 18,800 transcripts were detected in each sample. As many as 1648 and 2755 differentially expressed genes (DEGs) at 1 dpi as well as 2992 and 3141 DEGs at 3 dpi were identified in B10 and Gy14, respectively. DEGs were characterized in terms of functional categories. Resistant line Gy14 showed massive transcriptomic response to Psl at 1 dpi compared to susceptible line B10, while a similar number of DEGs was detected for both lines at 3 dpi. This suggests that dynamic transcriptomic response to the invading pathogen may be related with host resistance. This manuscript provides the first transcriptomic data on cucumber infected with the pathovar lachrymans and helps to elucidate resistance mechanism against ALS disease.


Asunto(s)
Cucumis sativus/genética , Cucumis sativus/microbiología , Perfilación de la Expresión Génica/métodos , Pseudomonas syringae/patogenicidad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830029

RESUMEN

Cyst nematodes are important herbivorous pests in agriculture that obtain nutrients through specialized root structures termed syncytia. Syncytium initiation, development, and functioning are a research focus because syncytia are the primary interface for molecular interactions between the host plant and parasite. The small size and complex development (over approximately two weeks) of syncytia hinder precise analyses, therefore most studies have analyzed the transcriptome of infested whole-root systems or syncytia-containing root segments. Here, we describe an effective procedure to microdissect syncytia induced by Globodera rostochiensis from tomato roots and to analyze the syncytial proteome using mass spectrometry. As little as 15 mm2 of 10-µm-thick sections dissected from 30 syncytia enabled the identification of 100-200 proteins in each sample, indicating that mass-spectrometric methods currently in use achieved acceptable sensitivity for proteome profiling of microscopic samples of plant tissues (approximately 100 µg). Among the identified proteins, 48 were specifically detected in syncytia and 7 in uninfected roots. The occurrence of approximately 50% of these proteins in syncytia was not correlated with transcript abundance estimated by quantitative reverse-transcription PCR analysis. The functional categories of these proteins confirmed that protein turnover, stress responses, and intracellular trafficking are important components of the proteome dynamics of developing syncytia.


Asunto(s)
Chromadorea , Células Gigantes/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas , Proteoma/metabolismo , Solanum lycopersicum , Animales , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitología , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología
7.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34445145

RESUMEN

The main goal of growing plants under various photoperiods is to optimize photosynthesis for using the effect of day length that often acts on plants in combination with biotic and/or abiotic stresses. In this study, Brassica juncea plants were grown under four different day-length regimes, namely., 8 h day/16 h night, 12 h day/12 h night, 16 h day/8 h night, and continuous light, and were infected with a necrotrophic fungus Alternaria brassicicola. The development of necroses on B. juncea leaves was strongly influenced by leaf position and day length. The largest necroses were formed on plants grown under a 16 h day/8 h night photoperiod at 72 h post-inoculation (hpi). The implemented day-length regimes had a great impact on leaf morphology in response to A. brassicicola infection. They also influenced the chlorophyll and carotenoid contents and photosynthesis efficiency. Both the 1st (the oldest) and 3rd infected leaves showed significantly higher minimal fluorescence (F0) compared to the control leaves. Significantly lower values of other investigated chlorophyll a fluorescence parameters, e.g., maximum quantum yield of photosystem II (Fv/Fm) and non-photochemical quenching (NPQ), were observed in both infected leaves compared to the control, especially at 72 hpi. The oldest infected leaf, of approximately 30% of the B. juncea plants, grown under long-day and continuous light conditions showed a 'green island' phenotype in the form of a green ring surrounding an area of necrosis at 48 hpi. This phenomenon was also reflected in changes in the chloroplast's ultrastructure and accelerated senescence (yellowing) in the form of expanding chlorosis. Further research should investigate the mechanism and physiological aspects of 'green islands' formation in this pathosystem.


Asunto(s)
Alternaria/patogenicidad , Planta de la Mostaza/microbiología , Planta de la Mostaza/fisiología , Necrosis/microbiología , Necrosis/patología , Fotosíntesis/fisiología , Enfermedades de las Plantas/microbiología , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Fluorescencia , Planta de la Mostaza/metabolismo , Necrosis/metabolismo , Fotoperiodo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología
8.
Plant J ; 100(2): 221-236, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31322300

RESUMEN

Plant-parasitic nematodes (PPNs) cause tremendous yield losses worldwide in almost all economically important crops. The agriculturally most important PPNs belong to a small group of root-infecting sedentary endoparasites that includes cyst and root-knot nematodes. Both cyst and root-knot nematodes induce specialized long-term feeding structures in root vasculature from which they obtain their nutrients. A specialized cell layer in roots called the endodermis, which has cell walls reinforced with suberin deposits and a lignin-based Casparian strip (CS), protects the vascular cylinder against abiotic and biotic threats. To date, the role of the endodermis, and especially of suberin and the CS, during plant-nematode interactions was largely unknown. Here, we analyzed the role of suberin and CS during interaction between Arabidopsis plants and two sedentary root-parasitic nematode species, the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. We found that nematode infection damages the endodermis leading to the activation of suberin biosynthesis genes at nematode infection sites. Although feeding sites induced by both cyst and root-knot nematodes are surrounded by endodermis during early stages of infection, the endodermis is degraded during later stages of feeding site development, indicating periderm formation or ectopic suberization of adjacent tissue. Chemical suberin analysis showed a characteristic suberin composition resembling peridermal suberin in nematode-infected tissue. Notably, infection assays using Arabidopsis lines with CS defects and impaired compensatory suberization, revealed that the CS and suberization impact nematode infectivity and feeding site size. Taken together, our work establishes the role of the endodermal barrier system in defence against a soil-borne pathogen.


Asunto(s)
Enfermedades de las Plantas/parasitología , Raíces de Plantas/citología , Raíces de Plantas/parasitología , Tylenchoidea/patogenicidad , Animales , Arabidopsis/citología , Arabidopsis/metabolismo , Arabidopsis/parasitología , Pared Celular/metabolismo , Pared Celular/parasitología , Interacciones Huésped-Parásitos , Lípidos/fisiología , Raíces de Plantas/metabolismo
9.
Plant Cell Physiol ; 61(7): 1273-1284, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32374847

RESUMEN

In this report, we describe studies on symplasmic communication and cellular rearrangement during direct somatic embryogenesis (SE) in the tree fern Cyathea delgadii. We analyzed changes in the symplasmic transport of low-molecular-weight fluorochromes, such as 8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt (HPTS) and fluorescein (delivered to cells as fluorescein diacetate, FDA), within stipe explants and somatic embryos originating from single epidermal cells and developing during 16-d long culture. Induction of SE is preceded by a restriction in fluorochrome distribution between certain explant cells. Microscopic analysis showed a series of cellular changes like a decrease in vacuole size, increase in vacuole numbers, and increased density of cytoplasm and deposition of electron-dense material in cell walls that may be related with embryogenic transition. In somatic embryos, the limited symplasmic communication between cells was observed first in linear tri-cellular embryos. Further development of the fern embryo was associated with the formation of symplasmic domains corresponding to the four segments of the plant body. Using symplasmic tracers, we provided evidence that the changes in plasmodesmata permeability are corelated with somatic-to-embryogenic transition and somatic embryo development.


Asunto(s)
Helechos/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Helechos/ultraestructura , Colorantes Fluorescentes , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Epidermis de la Planta/crecimiento & desarrollo , Semillas/ultraestructura
10.
Plant Cell Environ ; 43(5): 1160-1174, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32103526

RESUMEN

Plant-parasitic cyst nematodes induce hypermetabolic syncytial nurse cells in the roots of their host plants. Syncytia are their only food source. Cyst nematodes are sexually dimorphic, with their differentiation into male or female strongly influenced by host environmental conditions. Under favourable conditions with plenty of nutrients, more females develop, whereas mainly male nematodes develop under adverse conditions such as in resistant plants. Here, we developed and validated a method to predict the sex of beet cyst nematode (Heterodera schachtii) during the early stages of its parasitism in the host plant Arabidopsis thaliana. We collected root segments containing male-associated syncytia (MAS) or female-associated syncytia (FAS), isolated syncytial cells by laser microdissection, and performed a comparative transcriptome analysis. Genes belonging to categories of defence, nutrient deficiency, and nutrient starvation were over-represented in MAS as compared with FAS. Conversely, gene categories related to metabolism, modification, and biosynthesis of cell walls were over-represented in FAS. We used ß-glucuronidase analysis, qRT-PCR, and loss-of-function mutants to characterize FAS- and MAS-specific candidate genes. Our results demonstrate that various plant-based factors, including immune response, nutrient availability, and structural modifications, influence the sexual fate of the cyst nematodes.


Asunto(s)
Arabidopsis/parasitología , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/parasitología , Raíces de Plantas/parasitología , Procesos de Determinación del Sexo , Tylenchoidea/fisiología , Animales , Femenino , Regulación de la Expresión Génica , Genes de Helminto , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
BMC Plant Biol ; 18(1): 183, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30189843

RESUMEN

BACKGROUND: Pollen development is a strictly controlled post-meiotic process during which microspores differentiate into microgametophytes and profound structural and functional changes occur in organelles. Annexin 5 is a calcium- and lipid-binding protein that is highly expressed in pollen grains and regulates pollen development and physiology. To gain further insights into the role of ANN5 in Arabidopsis development, we performed detailed phenotypic characterization of Arabidopsis plants with modified ANN5 levels. In addition, interaction partners and subcellular localization of ANN5 were analyzed to investigate potential functions of ANN5 at cellular level. RESULTS: Here, we report that RNAi-mediated suppression of ANN5 results in formation of smaller pollen grains, enhanced pollen lethality, and delayed pollen tube growth. ANN5 RNAi knockdown plants also displayed aberrant development during the transition from the vegetative to generative phase and during embryogenesis, reflected by delayed bolting time and reduced embryo size, respectively. At the subcellular level, ANN5 was delivered to the nucleus, nucleolus, and cytoplasm, and was frequently localized in plastid nucleoids, suggesting a likely role in interorganellar communication. Furthermore, ANN5-YFP co-immunoprecipitated with RABE1b, a putative GTPase, and interaction in planta was confirmed in plastidial nucleoids using FLIM-FRET analysis. CONCLUSIONS: Our findings let us to propose that ANN5 influences basal cell homeostasis via modulation of plastid activity during pollen maturation. We hypothesize that the role of ANN5 is to orchestrate the plastidial and nuclear genome activities via protein-protein interactions however not only in maturing pollen but also during the transition from the vegetative to the generative growth and seed development.


Asunto(s)
Anexina A5/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/farmacología , Plastidios/fisiología , Polen/crecimiento & desarrollo , Proteínas de Unión al GTP rab1/farmacología , Anexina A5/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacología , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Técnicas de Silenciamiento del Gen , Genes de Plantas , Homeostasis , Polen/anatomía & histología , Polen/genética , Tubo Polínico/crecimiento & desarrollo , Plantones/metabolismo , Nicotiana/genética , Nicotiana/fisiología , Transcriptoma , Proteínas de Unión al GTP rab1/genética
12.
Plant Cell Rep ; 37(9): 1279-1292, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29947953

RESUMEN

KEY MESSAGE: After initial up-regulation, expression of TUBG1 and TUBG2 is significantly down-regulated in mature syncytia, but lack of expression of either of γ-tubulin genes reduces numbers of nematode infections and developing females. Infective second stage juveniles of sedentary plant parasitic nematode Heterodera schachtii invade the root vascular tissue and induce a feeding site, named syncytium, formed as a result of cell hypertrophy and partial cell wall dissolution leading to a multinucleate state. Syncytium formation and maintenance involves a molecular interplay between the plant host and the developing juveniles leading to rearrangements and fragmentation of the plant cytoskeleton. In this study, we investigated the role of two Arabidopsis γ-tubulin genes (TUBG1 and TUBG2), involved in MTs nucleation during syncytium development. Expression analysis revealed that both γ-tubulin's transcript levels changed during syncytium development and after initial up-regulation (1-3 dpi) they were significantly down-regulated in 7, 10 and 15 dpi syncytia. Moreover, TUBG1 and TUBG2 showed distinct immunolocalization patterns in uninfected roots and syncytia. Although no severe changes in syncytium anatomy and ultrastructure in tubg1-1 and tubg2-1 mutants were observed compared to syncytia induced in wild-type plants, nematode infection assays revealed reduced numbers of infecting juveniles and developed female nematodes in mutant lines. Our results indicate that the expression of both TUBG1 and TUBG2 genes, although generally down-regulated in mature syncytia, is essential for successful root infection, development of functional syncytium and nematode maturation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/parasitología , Células Gigantes/citología , Células Gigantes/metabolismo , Tubulina (Proteína)/metabolismo , Tylenchoidea/patogenicidad , Animales , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Femenino , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Tubulina (Proteína)/genética
13.
Proc Natl Acad Sci U S A ; 112(41): 12669-74, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26417108

RESUMEN

Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.


Asunto(s)
Arabidopsis , Citocininas/metabolismo , Interacciones Huésped-Parásitos/fisiología , Nematodos/fisiología , Enfermedades de las Plantas/parasitología , Transducción de Señal , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/parasitología , Secuencia de Bases , Citocininas/genética , Datos de Secuencia Molecular
14.
Plant Cell Environ ; 38(2): 315-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24471507

RESUMEN

As obligate photoautotrophs, plants are inevitably exposed to ultraviolet (UV) radiation. Because of stratospheric ozone depletion, UV has become more and more dangerous to the biosphere. Therefore, it is important to understand UV perception and signal transduction in plants. In the present study, we show that lesion simulating disease 1 (LSD1) and enhanced disease susceptibility 1 (EDS1) are antagonistic regulators of UV-C-induced programmed cell death (PCD) in Arabidopsis thaliana. This regulatory dependence is manifested by a complex deregulation of photosynthesis, reactive oxygen species homeostasis, antioxidative enzyme activity and UV-responsive genes expression. We also prove that a UV-C radiation episode triggers apoptotic-like morphological changes within the mesophyll cells. Interestingly, chloroplasts are the first organelles that show features of UV-C-induced damage, which may indicate their primary role in PCD development. Moreover, we show that Arabidopsis Bax inhibitor 1 (AtBI1), which has been described as a negative regulator of plant PCD, is involved in LSD1-dependent cell death in response to UV-C. Our results imply that LSD1 and EDS1 regulate processes extinguishing excessive energy, reactive oxygen species formation and subsequent PCD in response to different stresses related to impaired electron transport.


Asunto(s)
Apoptosis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Proteínas de Unión al ADN/metabolismo , Transducción de Señal/efectos de la radiación , Estrés Fisiológico/efectos de la radiación , Factores de Transcripción/metabolismo , Rayos Ultravioleta , Antioxidantes/metabolismo , Arabidopsis/enzimología , Arabidopsis/efectos de la radiación , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Unión al ADN/genética , Electrólitos/metabolismo , Fluorescencia , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Peróxido de Hidrógeno/metabolismo , Mutación , Oxidación-Reducción/efectos de la radiación , Fotosíntesis/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/ultraestructura , Factores de Transcripción/genética
15.
Proc Natl Acad Sci U S A ; 109(25): 10119-24, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22675118

RESUMEN

Plants lack the seemingly unlimited receptor diversity of a somatic adaptive immune system as found in vertebrates and rely on only a relatively small set of innate immune receptors to resist a myriad of pathogens. Here, we show that disease-resistant tomato plants use an efficient mechanism to leverage the limited nonself recognition capacity of their innate immune system. We found that the extracellular plant immune receptor protein Cf-2 of the red currant tomato (Solanum pimpinellifolium) has acquired dual resistance specificity by sensing perturbations in a common virulence target of two independently evolved effectors of a fungus and a nematode. The Cf-2 protein, originally identified as a monospecific immune receptor for the leaf mold fungus Cladosporium fulvum, also mediates disease resistance to the root parasitic nematode Globodera rostochiensis pathotype Ro1-Mierenbos. The Cf-2-mediated dual resistance is triggered by effector-induced perturbations of the apoplastic Rcr3(pim) protein of S. pimpinellifolium. Binding of the venom allergen-like effector protein Gr-VAP1 of G. rostochiensis to Rcr3(pim) perturbs the active site of this papain-like cysteine protease. In the absence of the Cf-2 receptor, Rcr3(pim) increases the susceptibility of tomato plants to G. rostochiensis, thus showing its role as a virulence target of these nematodes. Furthermore, both nematode infection and transient expression of Gr-VAP1 in tomato plants harboring Cf-2 and Rcr3(pim) trigger a defense-related programmed cell death in plant cells. Our data demonstrate that monitoring host proteins targeted by multiple pathogens broadens the spectrum of disease resistances mediated by single plant immune receptors.


Asunto(s)
Cladosporium/patogenicidad , Nematodos/patogenicidad , Enfermedades de las Plantas/inmunología , Receptores Inmunológicos/fisiología , Solanum lycopersicum/inmunología , Animales , Datos de Secuencia Molecular , Virulencia
16.
New Phytol ; 201(2): 476-485, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24117492

RESUMEN

The enzyme myo-inositol oxygenase is the key enzyme of a pathway leading from myo-inositol to UDP-glucuronic acid. In Arabidopsis, myo-inositol oxygenase is encoded by four genes. All genes are strongly expressed in syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Here, we studied the effect of a quadruple myo-inositol oxygenase mutant on nematode development. We performed metabolite profiling of syncytia induced in roots of the myo-inositol oxygenase quadruple mutant. The role of galactinol in syncytia was studied using Arabidopsis lines with elevated galactinol levels and by supplying galactinol to wild-type seedlings. The quadruple myo-inositol oxygenase mutant showed a significant reduction in susceptibility to H. schachtii, and syncytia had elevated myo-inositol and galactinol levels and an elevated expression level of the antimicrobial thionin gene Thi2.1. This reduction in susceptibility could also be achieved by exogenous application of galactinol to wild-type seedlings. The primary function of myo-inositol oxygenase for syncytium development is probably not the production of UDP-glucuronic acid as a precursor for cell wall polysaccharides, but the reduction of myo-inositol levels and thereby a reduction in the galactinol level to avoid the induction of defence-related genes.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Inositol-Oxigenasa/fisiología , Inositol/metabolismo , Nematodos/fisiología , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inositol-Oxigenasa/genética , Inositol-Oxigenasa/metabolismo , Raíces de Plantas/metabolismo
17.
Results Probl Cell Differ ; 71: 371-403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37996687

RESUMEN

Plant-parasitic nematodes from the genera Globodera, Heterodera (cyst-forming nematodes), and Meloidogyne (root-knot nematodes) are notorious and serious pests of crops. They cause tremendous economic losses between US $80 and 358 billion a year. Nematodes infect the roots of plants and induce the formation of specialised feeding structures (syncytium and giant cells, respectively) that nourish juveniles and adults of the nematodes. The specialised secretory glands enable nematodes to synthesise and secrete effectors that facilitate migration through root tissues and alter the morphogenetic programme of host cells. The formation of feeding sites is associated with the suppression of plant defence responses and deep reprogramming of the development and metabolism of plant cells.In this chapter, we focus on syncytia induced by the sedentary cyst-forming nematodes and provide an overview of ultrastructural changes that occur in the host roots during syncytium formation in conjunction with the most important molecular changes during compatible and incompatible plant responses to infection with nematodes.


Asunto(s)
Quistes , Tylenchoidea , Animales , Quistes/metabolismo , Células Gigantes , Interacciones Huésped-Parásitos/fisiología , Plantas , Tylenchoidea/fisiología
18.
J Plant Physiol ; 272: 153680, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35338957

RESUMEN

Sedentary plant parasitic nematodes have developed competences to reprogram host plant cell metabolism via sophisticated manipulation of gene expression, leading to the formation of permanent feeding sites for an unlimited source of food. Arabidopsis thaliana and the beet cyst nematode Heterodera schachtii is a good model for studying the mechanisms of compatible plant-nematode interactions and basic plant responses to nematode infection. Transcription factors are proteins that modulate plant reactions during regular development and under different biotic and abiotic stresses via direct binding to promoter regions of genes. Here, we report on the AtHRS1 gene encoding a MYB-related transcription factor belonging to the GARP family, whose expression is downregulated in syncytia, as confirmed by gene expression analysis. Constitutive overexpression of AtHRS1 disturbed the development of nematode-induced syncytia and led to a reduction in the number of developed females in transgenic A. thaliana roots. In contrast, the hrs1 mutant with decreased expression of AtHRS1 was more susceptible to cyst nematode infection. The influence of AtHRS1 on selected elements of the JA-dependent defence pathway suggests its mode of action in plant response to nematode attack. Based on these results, we suggest that the downregulation of AtHRS1 expression by nematode is important for its successful development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Quistes , Tylenchoidea , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Quistes/metabolismo , Femenino , Regulación de la Expresión Génica de las Plantas , Células Gigantes/metabolismo , Oxilipinas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Tylenchoidea/fisiología
19.
Nat Commun ; 13(1): 6190, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261416

RESUMEN

Plant-parasitic nematodes are a major threat to crop production in all agricultural systems. The scarcity of classical resistance genes highlights a pressing need to find new ways to develop nematode-resistant germplasm. Here, we sequence and assemble a high-quality phased genome of the model cyst nematode Heterodera schachtii to provide a platform for the first system-wide dual analysis of host and parasite gene expression over time, covering all major parasitism stages. Analysis of the hologenome of the plant-nematode infection site identified metabolic pathways that were incomplete in the parasite but complemented by the host. Using a combination of bioinformatic, genetic, and biochemical approaches, we show that a highly atypical completion of vitamin B5 biosynthesis by the parasitic animal, putatively enabled by a horizontal gene transfer from a bacterium, is required for full pathogenicity. Knockout of either plant-encoded or now nematode-encoded steps in the pathway significantly reduces parasitic success. Our experiments establish a reference for cyst nematodes, further our understanding of the evolution of plant-parasitism by nematodes, and show that congruent differential expression of metabolic pathways in the infection hologenome represents a new way to find nematode susceptibility genes. The approach identifies genome-editing-amenable targets for future development of nematode-resistant crops.


Asunto(s)
Quistes , Parásitos , Tylenchida , Animales , Ácido Pantoténico , Transcriptoma
20.
Cells ; 10(6)2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199921

RESUMEN

Somatic embryogenesis is the formation of a plant embryo from a cell other than the product of gametic fusion. The need to recognize the determinants of somatic cell fate has prompted investigations on how endogenous factors of donor tissues can determine the pattern of somatic embryo origin. The undertaking of this study was enabled by the newly developed experimental system of somatic embryogenesis of the tree fern Cyathea delgadii Sternb., in which the embryos are produced in hormone-free medium. The contents of 89 endogenous compounds (such as sugars, auxins, cytokinins, gibberellins, stress-related hormones, phenolic acids, polyamines, and amino acids) and cytomorphological features were compared between two types of explants giving rise to somatic embryos of unicellular or multicellular origin. We found that a large content of maltose, 1-kestose, abscisic acid, biologically active gibberellins, and phenolic acids was characteristic for single-cell somatic embryo formation pattern. In contrast, high levels of starch, callose, kinetin riboside, arginine, and ethylene promoted their multicellular origin. Networks for visualization of the relations between studied compounds were constructed based on the data obtained from analyses of a Pearson correlation coefficient heatmap. Our findings present for the first time detailed features of donor tissue that can play an important role in the somatic-to-embryogenic transition and the somatic embryo origin.


Asunto(s)
Citocininas/farmacología , Helechos/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Helechos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA