RESUMEN
Contemporary pose estimation methods enable precise measurements of behavior via supervised deep learning with hand-labeled video frames. Although effective in many cases, the supervised approach requires extensive labeling and often produces outputs that are unreliable for downstream analyses. Here, we introduce 'Lightning Pose', an efficient pose estimation package with three algorithmic contributions. First, in addition to training on a few labeled video frames, we use many unlabeled videos and penalize the network whenever its predictions violate motion continuity, multiple-view geometry and posture plausibility (semi-supervised learning). Second, we introduce a network architecture that resolves occlusions by predicting pose on any given frame using surrounding unlabeled frames. Third, we refine the pose predictions post hoc by combining ensembling and Kalman smoothing. Together, these components render pose trajectories more accurate and scientifically usable. We released a cloud application that allows users to label data, train networks and process new videos directly from the browser.
Asunto(s)
Algoritmos , Teorema de Bayes , Grabación en Video , Animales , Grabación en Video/métodos , Aprendizaje Automático Supervisado , Nube Computacional , Programas Informáticos , Postura/fisiología , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Conducta AnimalRESUMEN
Contemporary pose estimation methods enable precise measurements of behavior via supervised deep learning with hand-labeled video frames. Although effective in many cases, the supervised approach requires extensive labeling and often produces outputs that are unreliable for downstream analyses. Here, we introduce "Lightning Pose," an efficient pose estimation package with three algorithmic contributions. First, in addition to training on a few labeled video frames, we use many unlabeled videos and penalize the network whenever its predictions violate motion continuity, multiple-view geometry, and posture plausibility (semi-supervised learning). Second, we introduce a network architecture that resolves occlusions by predicting pose on any given frame using surrounding unlabeled frames. Third, we refine the pose predictions post-hoc by combining ensembling and Kalman smoothing. Together, these components render pose trajectories more accurate and scientifically usable. We release a cloud application that allows users to label data, train networks, and predict new videos directly from the browser.
RESUMEN
Methodological advances in neuroscience have enabled the collection of massive datasets which demand innovative approaches for scientific communication. Existing platforms for data storage lack intuitive tools for data exploration, limiting our ability to interact effectively with these brain-wide datasets. We introduce two public websites: (Data and Atlas) developed for the International Brain Laboratory which provide access to millions of behavioral trials and hundreds of thousands of individual neurons. These interfaces allow users to discover both the raw and processed brain-wide data released by the IBL at the scale of the whole brain, individual sessions, trials, and neurons. By hosting these data interfaces as websites they are available cross-platform with no installation. By releasing each site's code as a modular open-source framework, other researchers can easily develop their own web interfaces and explore their own data. As neuroscience datasets continue to expand, customizable web interfaces offer a glimpse into a future of streamlined data exploration and act as blueprints for future tools.
RESUMEN
OBJECTIVES: A combination of public and private practice by physicians, referred to as physician dual practice, has been receiving attention in connection with arguments about its negative impact for the public health care. This paper aims to review and critically discuss findings on the subject of dual practice effects for the public health care. METHODS: A systematic literature review identified 23 positions on the subject consisting of journal articles, academic working papers, book chapter, and publications of the WHO. RESULTS: The subject is short on evidence. Theoretical analyses indicate both positive and negative effects of dual practice. Some of the effects depend, however, on assumptions that are undermined in the broader literature. The analyses assume that the dual practitioners' objective is to maximise income. Yet, while physicians seem to engage in a private practice on top of the public one mainly to increase income, it remains uncertain whether dual practice is an income-maximising combination of jobs. Moreover, costs of enforcing restrictions on dual practice are rarely considered. CONCLUSIONS: Further research is needed that compares dual practitioners and other physicians in uniform settings, investigates how the dual practitioners divide labour between the two jobs, and analyses the costs of enforcing restrictions on dual practice.