Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 103(23): 235501, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-20366157

RESUMEN

The phase stability of group VB (V, Nb, and Ta) transition metals is explored by first-principles electronic-structure calculations. Alloying with a small amount of a neighboring metal can either stabilize or destabilize the body-centered-cubic phase relative to low-symmetry rhombohedral phases. We show that band-structure effects determine phase stability when a particular group VB metal is alloyed with its nearest neighbors within the same d-transition series. In this case, the neighbor with less (to the left) and more (to the right) d electrons destabilize and stabilize bcc, respectively. When alloying with neighbors of higher d-transition series, electrostatic Madelung energy dominates and stabilizes the body-centered-cubic phase. This surprising prediction invalidates current understanding of simple d-electron bonding that dictates high-symmetry cubic and hexagonal phases.

2.
Phys Rev B ; 100(9)2019.
Artículo en Inglés | MEDLINE | ID: mdl-33553858

RESUMEN

We have measured the room-temperature phonon spectrum of Mo-stabilized γ-U. The dispersion curves show unusual softening near the H point, q = [1/2, 1/2, 1/2], which may derive from the metastability of the γ-U phase or from strong electron-phonon coupling. Near the zone center, the dispersion curves agree well with theory, though significant differences are observed away from the zone center. The experimental phonon density of states is shifted to higher energy compared to theory and high-temperature neutron scattering. The elastic constants of γ-UMo are similar to those of body-centered cubic elemental metals.

3.
Phys Rev Lett ; 84(18): 4132-5, 2000 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-10990628

RESUMEN

We report a new phase transition in cobalt from the magnetic varepsilon(hcp) to a beta(fcc) phase, likely nonmagnetic, at 105 GPa. It occurs martensitically in an extended pressure region between 105 and 150 GPa without any apparent volume change. The fcc phase of Co is in systematic accordance with the 4d and 5d counterparts. The pressure-volume isotherm of beta-Co resembles those of alpha(fcc)-Ni and varepsilon(hcp)-Fe within 1%. The phase diagram of cobalt suggests that the fcc stability increases with increasing occupancy of d-band electrons from Fe to Co to Ni.

4.
J Phys Condens Matter ; 25(42): 425401, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24065339

RESUMEN

As chromium is a decisive ingredient for stainless steels, a reliable understanding of its thermodynamic properties is indispensable. Parameter-free first-principles methods have nowadays evolved to a state allowing such thermodynamic predictions. For materials such as Cr, however, the inclusion of magnetic entropy and higher order contributions such as anharmonic entropy is still a formidable task. Employing state-of-the-art ab initio molecular dynamics simulations and statistical concepts, we compute a set of thermodynamic properties based on quasiharmonic, anharmonic, electronic and magnetic free energy contributions from first principles. The magnetic contribution is modeled by an effective nearest-neighbor Heisenberg model, which itself is solved numerically exactly by means of a quantum Monte Carlo method. We investigate two different scenarios: a weak magnetic coupling scenario for Cr, as usually presumed in empirical thermodynamic models, turns out to be in clear disagreement with experimental observations. We show that instead a mixed Hamiltonian including weak and strong magnetic coupling provides a consistent picture with good agreement to experimental thermodynamic data.

5.
Phys Rev Lett ; 68(18): 2802-2805, 1992 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-10045496
6.
Phys Rev B Condens Matter ; 45(21): 12588-12591, 1992 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10001303
7.
Phys Rev B Condens Matter ; 52(3): 1631-1639, 1995 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9981225
9.
Phys Rev B Condens Matter ; 48(13): 9212-9215, 1993 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-10007153
10.
Phys Rev B Condens Matter ; 48(13): 9306-9312, 1993 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-10007165
11.
Phys Rev B Condens Matter ; 48(9): 5844-5851, 1993 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10009117
15.
Phys Rev B Condens Matter ; 45(22): 12911-12916, 1992 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10001354
16.
Phys Rev B Condens Matter ; 51(2): 1058-1063, 1995 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-9978257
17.
Phys Rev B Condens Matter ; 51(7): 4618-4621, 1995 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-9979309
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA