Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Microbiol ; 80(3): 94, 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36737549

RESUMEN

Benzene, toluene, ethylbenzene and xylene (BTEX) are toxic petroleum hydrocarbons pollutants that can affect the central nervous system and even cause cancer. For that reason, studies regarding BTEX degradation are extremely important. Our study aimed evaluate the microorganism Bacillus subtilis as a tool for degrading petroleum hydrocarbons pollutants. Assays were run utilizing water or soil distinctly contaminated with gasoline and diesel oil, with and without B. subtilis. The ability of B. subtilis to degrade hydrophobic compounds was analyzed by Fourier-Transform Infrared Spectroscopy (FTIR) and gas chromatography. The FTIR results indicated, for water assays, that B. subtilis utilized the gasoline and diesel oil to produce the biosurfactant, and, as a consequence, performed a biodegradation process. In the same way, for soil assay, B. subtilis biodegraded the diesel oil. The gas chromatography results indicated, for gasoline in soil assay, the B. subtilis removed BTEX. So, B. subtilis was capable of degrading BTEX, producing biosurfactant and it can also be used for other industrial applications. Bioremediation can be an efficient, economical, and versatile alternative for BTEX contamination.


Asunto(s)
Contaminantes Ambientales , Petróleo , Contaminantes del Suelo , Gasolina , Bacillus subtilis/metabolismo , Suelo/química , Hidrocarburos/metabolismo , Benceno/química , Benceno/metabolismo , Tolueno/metabolismo , Petróleo/metabolismo , Xilenos/metabolismo , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Contaminantes Ambientales/metabolismo , Microbiología del Suelo
2.
Polymers (Basel) ; 14(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080572

RESUMEN

Based on the previous study, in which nisin and bacterial cellulose were utilized, this new experiment loads nisin into bacterial cellulose (N-BC) and evaluates the morphological characteristics, cytotoxicity, antimicrobial activity and stability of the developed system. The load efficiency of nisin in BC was evaluated by an agar diffusion assay, utilizing Lactobacillus sakei, and total proteins. After having found the ideal time and concentration for the loading process, the system stability was evaluated for 100 days at 4, 25 and 37 °C against Staphylococcus aureus and L. sakei. Thus, in this study, there is a system that proves to be efficient, once BC has enhanced the antimicrobial activity of nisin, acting as a selective barrier for other compounds present in the standard solution and protecting the peptide. After 4 h, with 45% of proteins, this activity was almost 2 log10 higher than that of the initial solution. Once the nisin solution was not pure, it is possible to suggest that the BC may have acted as a filter. This barrier enhanced the nisin activity and, as a consequence of the nisin loading, a stable N-BC system formed. The N-BC could create meaningful material for pharmaceutical and food applications.

3.
Sci Rep ; 11(1): 23944, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907234

RESUMEN

Nanocomplexes systems made up natural poylymers have pharmacotechnical advantages such as increase of water solubility and a decrease of drugs toxicity. Amphotericin B (AmB) is a drug apply as anti-leishmanial and anti-fungal, however it has low water solubility and high toxicity, limiting its therapeutic application. With this in mind, the present study aimed to produce nanocomplexes composed by alginate (Alg), a natural polymer, with AmB covered by nanocrystals from bacterial cellulose (CNC). For this reason, the nanocomplexes were produced utilizing sodium alginate, amphotericin B in a borate buffer (pH 11.0). The CNC was obtained by enzymatic hydrolysis of the bacterial cellulose. To CNC cover the nanocomplexes 1 ml of the nanocomplexes was added into 1 ml of 0.01% CNC suspension. The results showed an ionic adsorption of the CNC into the Alg-AmB nanocomplexes surface. This phenomena was confirmed by an increase in the particle size and PDI decrease. Besides, nanocomplexes samples covered by CNC showed uniformity. The amorphous inclusion of AmB complex into the polysaccharide chain network in both formulations. AmB in the nanocomplexes was in supper-aggregated form and showed good biocompatibility, being significantly less cytotoxic in vitro against kidney cells and significantly less hemolytic compared to the free-drug. The in vitro toxicity results indicated the Alg-AmB nanocomplexes can be considered a non-toxic alternative to improve the AmB therapeutic effect. All process to obtain nanocomplexes and it coat was conduce without organic solvents, can be considered a green process, and allowed to obtain water soluble particles. Furthermore, CNC covering the nanocomplexes brought additional protection to the system can contribut advancement in the pharmaceutical.


Asunto(s)
Anfotericina B , Celulosa , Nanopartículas , Alginatos/efectos adversos , Alginatos/química , Alginatos/farmacología , Anfotericina B/efectos adversos , Anfotericina B/química , Anfotericina B/farmacología , Animales , Celulosa/efectos adversos , Celulosa/química , Celulosa/farmacología , Perros , Células HEK293 , Hemólisis/efectos de los fármacos , Humanos , Nanopartículas/efectos adversos , Nanopartículas/química , Nanopartículas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA