Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 399(1): 2-14, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25512301

RESUMEN

The correct wiring of neuronal circuits is of crucial importance for the function of the vertebrate nervous system. Guidance cues like the neuropilin receptors (Npn) and their ligands, the semaphorins (Sema) provide a tight spatiotemporal control of sensory and motor axon growth and guidance. Among this family of guidance partners the Sema3A-Npn1 interaction has been shown to be of great importance, since defective signaling leads to wiring deficits and defasciculation. For the embryonic stage these defects have been well described, however, also after birth the organism can adapt to new challenges by compensational mechanisms. Therefore, we used the mouse lines Olig2-Cre;Npn1(cond) and Npn1(Sema-) to investigate how postnatal organisms cope with the loss of Npn1 selectively from motor neurons or a systemic dysfunctional Sema3A-Npn1 signaling in the entire organism, respectively. While in Olig2-Cre(+);Npn1(cond-/-) mice clear anatomical deficits in paw posturing, bone structure, as well as muscle and nerve composition became evident, Npn1(Sema-) mutants appeared anatomically normal. Furthermore, Olig2-Cre(+);Npn1(cond) mutants revealed a dysfunctional extensor muscle innervation after single-train stimulation of the N.radial. Interestingly, these mice did not show obvious deficits in voluntary locomotion, however, skilled motor function was affected. In contrast, Npn1(Sema-) mutants were less affected in all behavioral tests and able to improve their performance over time. Our data suggest that loss of Sema3A-Npn1 signaling is not the only cause for the observed deficits in Olig2-Cre(+);Npn1(cond-/-) mice and that additional, yet unknown binding partners for Npn1 may be involved that allow Npn1(Sema-) mutants to compensate for their developmental deficits.


Asunto(s)
Neuronas Motoras/metabolismo , Neuropilina-1/metabolismo , Semaforina-3A/metabolismo , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Axones/metabolismo , Axones/fisiología , Axones/ultraestructura , Peso Corporal/genética , Peso Corporal/fisiología , Desarrollo Óseo/genética , Desarrollo Óseo/fisiología , Huesos/embriología , Huesos/inervación , Huesos/metabolismo , Miembro Anterior/embriología , Miembro Anterior/crecimiento & desarrollo , Miembro Anterior/inervación , Inmunohistoquímica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Actividad Motora/genética , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Neuronas Motoras/ultraestructura , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/inervación , Fibras Nerviosas/metabolismo , Fibras Nerviosas/fisiología , Fibras Nerviosas/ultraestructura , Neuropilina-1/genética , Semaforina-3A/genética , Transducción de Señal/genética , Factores de Tiempo
2.
PLoS Biol ; 9(2): e1001020, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21364975

RESUMEN

The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.


Asunto(s)
Axones/metabolismo , Extremidades/inervación , Neuronas Motoras/metabolismo , Neuropilina-1/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Fasciculación/metabolismo , Fasciculación/patología , Eliminación de Gen , Integrasas/metabolismo , Ratones , Neuronas Motoras/patología , Células Receptoras Sensoriales/patología , Factores de Tiempo
3.
Brain ; 134(Pt 4): 1156-67, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21421691

RESUMEN

Oligodendrocyte precursor cells, which persist in the adult central nervous system, are the main source of central nervous system remyelinating cells. In multiple sclerosis, some demyelinated plaques exhibit an oligodendroglial depopulation, raising the hypothesis of impaired oligodendrocyte precursor cell recruitment. Developmental studies identified semaphorins 3A and 3F as repulsive and attractive guidance cues for oligodendrocyte precursor cells, respectively. We previously reported their increased expression in experimental demyelination and in multiple sclerosis. Here, we show that adult oligodendrocyte precursor cells, like their embryonic counterparts, express class 3 semaphorin receptors, neuropilins and plexins and that neuropilin expression increases after demyelination. Using gain and loss of function experiments in an adult murine demyelination model, we demonstrate that semaphorin 3A impairs oligodendrocyte precursor cell recruitment to the demyelinated area. In contrast, semaphorin 3F overexpression accelerates not only oligodendrocyte precursor cell recruitment, but also remyelination rate. These data open new avenues to understand remyelination failure and promote repair in multiple sclerosis.


Asunto(s)
Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Semaforinas/metabolismo , Médula Espinal/metabolismo , Animales , Recuento de Células , Diferenciación Celular , Movimiento Celular/fisiología , Células Cultivadas , Células HEK293 , Humanos , Inmunohistoquímica , Ratones , Proteína Básica de Mielina/metabolismo , Estadísticas no Paramétricas
4.
PLoS One ; 10(4): e0123643, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25874621

RESUMEN

The correct wiring of neuronal circuits is of crucial importance for precise neuromuscular functionality. Therefore, guidance cues provide tight spatiotemporal control of axon growth and guidance. Mice lacking the guidance cue Semaphorin 3F (Sema3F) display very specific axon wiring deficits of motor neurons in the medial aspect of the lateral motor column (LMCm). While these deficits have been investigated extensively during embryonic development, it remained unclear how Sema3F mutant mice cope with these errors postnatally. We therefore investigated whether these animals provide a suitable model for the exploration of adaptive plasticity in a system of miswired neuronal circuitry. We show that the embryonically developed wiring deficits in Sema3F mutants persist until adulthood. As a consequence, these mutants display impairments in motor coordination that improve during normal postnatal development, but never reach wildtype levels. These improvements in motor coordination were boosted to wildtype levels by housing the animals in an enriched environment starting at birth. In contrast, a delayed start of enriched environment housing, at 4 weeks after birth, did not similarly affect motor performance of Sema3F mutants. These results, which are corroborated by neuroanatomical analyses, suggest a critical period for adaptive plasticity in neuromuscular circuitry. Interestingly, the formation of perineuronal nets, which are known to close the critical period for plastic changes in other systems, was not altered between the different housing groups. However, we found significant changes in the number of excitatory synapses on limb innervating motor neurons. Thus, we propose that during the early postnatal phase, when perineuronal nets have not yet been formed around spinal motor neurons, housing in enriched environment conditions induces adaptive plasticity in the motor system by the formation of additional synaptic contacts, in order to compensate for coordination deficits.


Asunto(s)
Axones/patología , Proteínas de la Membrana/fisiología , Neuronas Motoras/patología , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Animales , Conducta Animal , Toxina del Cólera/química , Electromiografía , Marcha , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Destreza Motora , Mutación , Proteínas del Tejido Nervioso/genética , Médula Espinal/patología , Sinapsis/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA