Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862727

RESUMEN

Elevated levels of D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG) in the brain are associated with various pathological conditions, potentially contributing to neurological symptoms and neurodegeneration. Previous studies on animal models have revealed their capability to interfere with several cellular processes, including mitochondrial metabolism. Both enantiomers competitively inhibit the enzymatic activity of 2-oxoglutarate-dependent dioxygenases. These enzymes also execute several signaling cascades and regulate the level of covalent modifications on nucleic acids or proteins, e.g., methylation, hydroxylation, or ubiquitination, with an effect on epigenetic regulation of gene expression, protein stability, and intracellular signaling. To investigate the potential impact of 2HG enantiomers on human neuronal cells, we utilized the SH-SY5Y human neuroblastoma cell line as a model. We employed proton nuclear magnetic resonance (1H-NMR) spectroscopy of culture media that provided high-resolution insights into the changes in the content of metabolites. Concurrently, we performed biochemical assays to complement the 1H-NMR findings and to estimate the activities of lactate and 3-hydroxybutyrate dehydrogenases. Our results reveal that both 2HG enantiomers can influence the cellular metabolism of human neuroblastoma cells on multiple levels. Specifically, both enantiomers of 2HG comparably stimulate anaerobic metabolism of glucose and inhibit the uptake of several essential amino acids from the culture media. In this respect, both 2HG enantiomers decreased the catabolism capability of cells to incorporate the leucine-derived carbon atoms into their metabolism and to generate the ketone bodies. These results provide evidence that both enantiomers of 2HG have the potential to influence the metabolic and molecular aspects of human cells. Furthermore, we may propose that increased levels of 2HG enantiomers in the brain parenchyma may alter brain metabolism features, potentially contributing to the etiology of neurological symptoms in patients.

2.
Metabolites ; 14(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38921432

RESUMEN

Glioblastoma is a highly malignant brain tumor consisting of a heterogeneous cellular population. The transformed metabolism of glioblastoma cells supports their growth and division on the background of their milieu. One might hypothesize that the transformed metabolism of a primary glioblastoma could be well adapted to limitations in the variety and number of substrates imported into the brain parenchyma and present it their microenvironment. Additionally, the phenotypic heterogeneity of cancer cells could promote the variations among their metabolic capabilities regarding the utilization of available substrates and release of metabolic intermediates. With the aim to identify the putative metabolic footprint of different types of glioblastoma cells, we exploited the possibility for separation of polar and ionic molecules present in culture media or cell lysates by hydrophilic interaction liquid chromatography (HILIC). The mass spectrometry (MS) was then used to identify and quantify the eluted compounds. The introduced method allows the detection and quantification of more than 150 polar and ionic metabolites in a single run, which may be present either in culture media or cell lysates and provide data for polaromic studies within metabolomics. The method was applied to analyze the culture media and cell lysates derived from two types of glioblastoma cells, T98G and U118. The analysis revealed that even both types of glioblastoma cells share several common metabolic aspects, and they also exhibit differences in their metabolic capability. This finding agrees with the hypothesis about metabolic heterogeneity of glioblastoma cells. Furthermore, the combination of both analytical methods, HILIC-MS, provides a valuable tool for metabolomic studies based on the simultaneous identification and quantification of a wide range of polar and ionic metabolites-polaromics.

3.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38543131

RESUMEN

Adenosine is a multifunctional nucleoside with several roles across various levels in organisms. Beyond its intracellular involvement in cellular metabolism, extracellular adenosine potently influences both physiological and pathological processes. In relation to its blood level, adenosine impacts the cardiovascular system, such as heart beat rate and vasodilation. To exploit the adenosine levels in the blood, we employed the liquid chromatography method coupled with mass spectrometry (LC-MS). Immediately after collection, a blood sample mixed with acetonitrile solution that is either enriched with 13C-labeled adenosine or a newly generated mixture is transferred into the tubes containing the defined amount of 13C-labeled adenosine. The 13C-enriched isotopic adenosine is used as an internal standard, allowing for more accurate quantification of adenosine. This novel protocol for LC-MS-based estimation of adenosine delivers a rapid, highly sensitive, and reproducible means for quantitative estimation of total adenosine in blood. The method also allows for quantification of a few catabolites of adenosine, i.e., inosine, hypoxanthine, and xanthine. Our current setup did not allow for the detection or quantifying of uric acid, which is the final product of adenosine catabolism. This advancement provides an analytical tool that has the potential to enhance our understanding of adenosine's systemic impact and pave the way for further investigations into its intricate regulatory mechanisms.

4.
Cancers (Basel) ; 14(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35158853

RESUMEN

Leucine is an essential, ketogenic amino acid with proteinogenic, metabolic, and signaling roles. It is readily imported from the bloodstream into the brain parenchyma. Therefore, it could serve as a putative substrate that is complementing glucose for sustaining the metabolic needs of brain tumor cells. Here, we investigated the ability of cultured human cancer cells to metabolize leucine. Indeed, cancer cells dispose of leucine from their environment and enrich their media with the metabolite 2-oxoisocaproate. The enrichment of the culture media with a high level of leucine stimulated the production of 3-hydroxybutyrate. When 13C6-leucine was offered, it led to an increased appearance of the heavier citrate isotope with a molar mass greater by two units in the culture media. The expression of 3-methylcrotonyl-CoA carboxylase (MCC), an enzyme characteristic for the irreversible part of the leucine catabolic pathway, was detected in cultured cancer cells and human tumor samples by immunoprobing methods. Our results demonstrate that these cancer cells can catabolize leucine and furnish its carbon atoms into the tricarboxylic acid (TCA) cycle. Furthermore, the release of 3-hydroxybutyrate and citrate by cancer cells suggests their capability to exchange these metabolites with their milieu and the capability to participate in their metabolism. This indicates that leucine could be an additional substrate for cancer cell metabolism in the brain parenchyma. In this way, leucine could potentially contribute to the synthesis of metabolites such as lipids, which require the withdrawal of citrate from the TCA cycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA