Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Chem Rev ; 123(2): 701-735, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36577085

RESUMEN

Self-healing materials open new prospects for more sustainable technologies with improved material performance and devices' longevity. We present an overview of the recent developments in the field of intrinsically self-healing polymers, the broad class of materials based mostly on polymers with dynamic covalent and noncovalent bonds. We describe the current models of self-healing mechanisms and discuss several examples of systems with different types of dynamic bonds, from various hydrogen bonds to dynamic covalent bonds. The recent advances indicate that the most intriguing results are obtained on the systems that have combined different types of dynamic bonds. These materials demonstrate high toughness along with a relatively fast self-healing rate. There is a clear trade-off relationship between the rate of self-healing and mechanical modulus of the materials, and we propose design principles of polymers toward surpassing this trade-off. We also discuss various applications of intrinsically self-healing polymers in different technologies and summarize the current challenges in the field. This review intends to provide guidance for the design of intrinsic self-healing polymers with required properties.

2.
Soft Matter ; 20(18): 3868-3876, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38651737

RESUMEN

The topic of polymers with dynamic bonds (stickers) appears as an exciting and promising area of materials science, thanks to their attractive self-healable, recyclable, extremely tough, and super extensible properties. Polymers with phase separated dynamic bonds revealed several unique properties, but mechanisms controlling their viscoelastic properties remain poorly understood. In this work, we present a dynamic analysis of a model polymer system with phase separated hydrogen bonding functionalities. The results confirm that terminal relaxation in these systems is independent of polymer segmental dynamics and is instead controlled by structural relaxations in clusters of stickers. Detailed analysis revealed a surprising result: terminal relaxation time of these systems has weaker temperature dependence than that of structural relaxation in clusters, although the former is slower than the latter. Borrowing ideas from the field of block copolymers, we ascribed this unusual result to an LCST-like behavior for the miscibility of the stickers in the polymer matrix. The presented results and ideas deepen the understanding of the viscoelasticity for polymers with dynamic bonds, enabling intelligent design of functional materials with desired macroscopic properties.

3.
Angew Chem Int Ed Engl ; 62(47): e202310989, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37783669

RESUMEN

Despite intensive research on sustainable elastomers, achieving elastic vitrimers with significantly improved mechanical properties and recyclability remains a scientific challenge. Herein, inspired by the classical elasticity theory, we present a design principle for ultra-tough and highly recyclable elastic vitrimers with a defined network constructed by chemically crosslinking the pre-synthesized disulfide-containing polydimethylsiloxane (PDMS) chains with tetra-arm polyethylene glycol (PEG). The defined network is achieved by the reduced dangling short chains and the relatively uniform molecular weight of network strands. Such elastic vitrimers with the defined network, i.e., PDMS-disulfide-D, exhibit significantly improved mechanical performance than random analogous, previously reported PDMS vitrimers, and even commercial silicone-based thermosets. Moreover, unlike the vitrimers with random network that show obvious loss in mechanical properties after recycling, those with the defined network enable excellent thermal recyclability. The PDMS-disulfide-D also deliver comparable electrochemical signals if utilized as substrates for electromyography sensors after the recycling. The multiple relaxation processes are revealed via a unique physical approach. Multiple techniques are also applied to unravel the microscopic mechanism of the excellent mechanical performance and recyclability of such defined network.

4.
Phys Chem Chem Phys ; 24(27): 16712-16723, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35770687

RESUMEN

Hexamethylguanidinium bis(fluorosulfonyl)imide ([HMG][FSI]) has recently been shown to be a promising solid state organic ionic plastic crystal with potential application in advanced alkali metal batteries. This study provides a detailed exploration of the structural and dynamic behavior of [HMG][FSI] mixtures with the sodium salt NaFSI across the whole composition range from 0 to 100 mol%. All mixtures are solids at room temperature. A combination of differential scanning calorimetry (DSC), synchrotron X-ray diffraction (SXRD) and multinuclear solid state NMR spectroscopy is employed to identify a partial phase diagram. The 25 mol% NaFSI/75 mol% [HMG][FSI] composition presents as the eutectic composition with the eutectic transition temperature at 44 °C. Both DSC and SXRD strongly support the formation of a new compound near 50 mol% NaFSI. Interestingly, the 53 mol% NaFSI [HMG][FSI] composition was consistently found to display features of a pure compound whereas the 50 mol% materials always showed a second phase. Many of the compositions examined showed unusual metastable behaviour. Moreover, the ion dynamics as determined by NMR, indicate that the Na+ and FSI- anions are signifcantly more mobile than the HMG cation in the liquid state (including the metastable state) for these materials.

5.
Entropy (Basel) ; 24(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36010765

RESUMEN

Understanding the microscopic mechanism of the transition of glass remains one of the most challenging topics in Condensed Matter Physics. What controls the sharp slowing down of molecular motion upon approaching the glass transition temperature Tg, whether there is an underlying thermodynamic transition at some finite temperature below Tg, what the role of cooperativity and heterogeneity are, and many other questions continue to be topics of active discussions. This review focuses on the mechanisms that control the steepness of the temperature dependence of structural relaxation (fragility) in glass-forming liquids. We present a brief overview of the basic theoretical models and their experimental tests, analyzing their predictions for fragility and emphasizing the successes and failures of the models. Special attention is focused on the connection of fast dynamics on picosecond time scales to the behavior of structural relaxation on much longer time scales. A separate section discusses the specific case of polymeric glass-forming liquids, which usually have extremely high fragility. We emphasize the apparent difference between the glass transitions in polymers and small molecules. We also discuss the possible role of quantum effects in the glass transition of light molecules and highlight the recent discovery of the unusually low fragility of water. At the end, we formulate the major challenges and questions remaining in this field.

6.
J Chem Phys ; 154(1): 014503, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33412878

RESUMEN

Proton transport is critical for many technologies and for a variety of biochemical and biophysical processes. Proton transfer between molecules (via structural diffusion) is considered to be an efficient mechanism in highly proton conducting materials. Yet, the mechanism and what controls energy barriers for this process remain poorly understood. It was shown that mixing phosphoric acid (PA) with lidocaine leads to an increase in proton conductivity at the same liquid viscosity. However, recent simulations of mixtures of PA with various bases, including lidocaine, suggested no decrease in the proton transfer energy barrier. To elucidate this surprising result, we have performed broadband dielectric spectroscopy to verify the predictions of the simulations for mixtures of PA with several bases. Our results reveal that adding bases to PA increases the energy barriers for proton transfer, and the observed increase in proton conductivity at a similar viscosity appears to be related to the increase in the glass transition temperature (Tg) of the mixture. Moreover, the energy barrier seems to increase with Tg of the mixtures, emphasizing the importance of molecular mobility or interactions in the proton transfer mechanism.

7.
Small ; 16(29): e2001884, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32567130

RESUMEN

Nanoporous TiNb2 O7 (NPTNO) material is synthesized by a sol-gel method with an ionic liquid (IL) as the nanoporous structure directing template. NPTNO exhibits a high reversible capacity of 210 mAh g-1 even at the charging rate of 50 C and an excellent cyclability of half-cell capacity retention of 74% for 1000 cycles at 5 C and LiNi0.5 Mn1.5 O4 -coupled full-cell capacity retentions of 81% and 87% for 1000 cycles at 1 C and 2 C, respectively. The studies of the 1000 cycled NPTNO electrode illustrate that the IL-directed mesoporous structure can enhance the cyclability of NPTNO cells due to the alleviation of repetitive mechanical stress and volume fluctuation induced by the repetitive Li+ insertion-extraction processes. The measured Li+ diffusion coefficients from the galvanostatic intermittent titration technique suggest that the IL-templating strategy indeed ensures the fast rechargeability of NPTNO cells based on the fast Li+ diffusion kinetics. Benefitting from the nanoporous structure, NPTNO with unhindered Li+ diffusion pathways achieves a superior rate capability in the titanium-based oxide materials and the best full-cell cyclability in the TNO materials. Therefore, the templating potential of IL is demonstrated, and the superb electrochemical performance establishes the IL-directed NPTNO as a promising anode candidate for fast-rechargeable LIBs.

8.
Soft Matter ; 16(2): 390-401, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31840152

RESUMEN

Recent findings that the association bond lifetimes τα* in associating polymers diverge from their supramolecular network relaxation times τc challenge past theories. The bond lifetime renormalization proposed by Rubinstein and coworkers [Stukalin et al., Macromolecules, 2013, 46, 7525] provides a promising explanation. To examine systematically its applicability, we employ shear rheology and dielectric spectroscopy to study telechelic associating polymers with different main chain (polypropylene glycol and polydimethylsiloxane), molecular weight (below entanglement molecular weight) and end groups (amide, and carboxylic acid) which form dimeric associations by hydrogen bonding. The separation between τc (probed by rheology) and τα* (probed by dielectric spectroscopy) strongly increases with chain length as qualitatively predicted by the model. However, to describe the increase quantitatively, a transition from Rouse to reptation dynamics must be assumed. This suggests that dynamics of super-chains must be considered to properly describe the transient network.

9.
J Phys Chem A ; 124(20): 4141-4149, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32314922

RESUMEN

Electronic structure calculations were performed to understand highly decoupled conductivities recently reported in protic ionic liquids (PILs). To develop a molecular-level understanding of the mechanisms of proton conductivity in PILs, minimum-energy structures of trimethylamine, imidazole, lidocaine, and creatinine (CRT) with the addition of one to three phosphoric acid (PA) molecules were determined at the B3LYP/6-311G** level of theory with the inclusion of an implicit solvation model (SMD with ε = 61). The proton affinity of the bases and zero-point energy corrected binding energies were computed at a similar level of theory. Proton dissociation from PA occurs in all systems, resulting in the formation of ion pairs due to the relatively strong basicity of the bases (proton acceptors) and the effect of the high dielectric constant solvent in stabilizing the charge separation. The second and third PA molecules preferentially form "ring-like" hydrogen bonds with one another instead of forming hydrogen bonds at the donor and acceptor sites of the bases. Potential energy scans reveal that the bases with stronger proton affinity exert greater influence on the energetics of proton transfer between the individual PA molecules. However, the effects are minimal when shifted into a single-well from a double-well potential. Barrierless proton transfer was observed to occur in the CRT system with several PA molecules present, implying that the CRT may be a promising PA-based PIL.

10.
J Chem Phys ; 152(9): 094904, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33480747

RESUMEN

We study experimentally the temperature evolution of the thickness of the interfacial layer, Lint(T), between bulk matrices and the surface of nanoparticles in nanocomposites through broadband dielectric spectroscopy. Analyses revealed a power-law dependence between the logarithm of structural relaxation time in the interfacial layer, τint(T), and the Lint(T): lnτint(T)/τ0∝Lint ß(T)/T, with τ0 ∼ 10-12 s, and ß index ∼0.67 at high temperatures and ∼1.7 at temperatures close to the glass transition temperature. In addition, our analysis revealed that the Lint(T) is comparable to the length scale of dynamic heterogeneity estimated from previous nonlinear dielectric measurements and the four-point NMR [ξNMR(T)], with Lint(T) ∼ ξNMR(T). These observations may suggest a direct correlation between the Lint(T) and the size of the cooperatively rearranging regions and have strong implications for understanding the dynamic heterogeneity and cooperativity in supercool liquids and their role in interfacial dynamics.

11.
Phys Rev Lett ; 121(6): 064503, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30141682

RESUMEN

The present study demonstrates that large electric fields progressively enhance the conductivity of ionic systems up to timescales corresponding to those on which their structural rearrangements take place. Yet, in many ionic materials, some regarded as candidates for electrical energy storage applications, the structural relaxation process can be tremendously slower than (or highly decoupled from) the charge fluctuations. Consequently, nonlinear dielectric spectroscopy may be employed to access rheological information in dynamically decoupled ionic conductors, whereas the combination of large electric power density and good mechanical stability, both technologically highly desired, imposes specific experimental constraints to reliably determine the steady-state conductivity of such materials.

12.
Soft Matter ; 14(7): 1235-1246, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29355867

RESUMEN

Associating polymers are a class of materials with widely tunable macroscopic properties. Here, we investigate telechelic poly(dimethylsiloxanes) of several molecular weights (MW) with different hydrogen bonding end groups. Besides the well-established increase of the glass transition temperature Tg with decreasing MW, Tg remains unchanged as the end group varies from NH2 over OH to COOH. For the latter system, a 2nd Tg is found which indicates a segregated phase. In contrast, rheological measurements reveal a qualitative difference in the viscoelastic response of NH2-terminated and COOH-terminated chains. Both systems show clear signs of end group association, but only the latter exhibits an extended rubbery plateau. All features observed in the rheology experiments have corresponding processes in the dielectric measurements. This provides insight into the underlying molecular mechanisms, and especially reveals that many end groups of the COOH-terminated chains phase segregate while a certain fraction forms binary associates and remains non-segregated. In contrast, the NH2-terminated systems form only binary associates increasing the effective chain length, whereas the COOH-terminated system consists of two types of associates forming a crosslinked network. Remarkably, a single species of end group forms two qualitatively different types of associates: transient bonds which allow stress release by a bond-partner exchange mechanism, and effectively permanent bonds formed by a phase segregated fraction of end groups which are stable on the timescale of the transient mechanism.

13.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt B): 3546-3552, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27155577

RESUMEN

BACKGROUND: The importance of protein dynamics for their biological activity is now well recognized. Different experimental and computational techniques have been employed to study protein dynamics, hierarchy of different processes and the coupling between protein and hydration water dynamics. Yet, understanding the atomistic details of protein dynamics and the role of hydration water remains rather limited. SCOOP OF REVIEW: Based on overview of neutron scattering, molecular dynamic simulations, NMR and dielectric spectroscopy results we present a general picture of protein dynamics covering time scales from faster than ps to microseconds and the influence of hydration water on different relaxation processes. MAJOR CONCLUSIONS: Internal protein dynamics spread over a wide time range from faster than picosecond to longer than microseconds. We suggest that the structural relaxation in hydrated proteins appears on the microsecond time scale, while faster processes present mostly motion of side groups and some domains. Hydration water plays a crucial role in protein dynamics on all time scales. It controls the coupled protein-hydration water relaxation on 10-100ps time scale. This process defines the friction for slower protein dynamics. Analysis suggests that changes in amount of hydration water affect not only general friction, but also influence significantly the protein's energy landscape. GENERAL SIGNIFICANCE: The proposed atomistic picture of protein dynamics provides deeper understanding of various relaxation processes and their hierarchy, similarity and differences between various biological macromolecules, including proteins, DNA and RNA. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo".


Asunto(s)
Simulación de Dinámica Molecular , Muramidasa/química , Agua/química , Difracción de Neutrones , Análisis Espectral , Termodinámica
14.
Nanotechnology ; 28(28): 285601, 2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-28555610

RESUMEN

Polymer residue plays an important role in the performance of 2D heterostructured materials. Herein, we study the effect of polymer residual impurities on the electrical properties of graphene-boron nitride planar heterostructures. Large-area graphene (Gr) and hexagonal boron nitride (h-BN) monolayers were synthesized using chemical vapor deposition techniques. Atomic van-der-Waals heterostructure layers based on varied configurations of Gr and h-BN layers were assembled. The average interlayer resistance of the heterojunctions over a 1 cm2 area for several planar heterostructure configurations was assessed by impedance spectroscopy and modeled by equivalent electrical circuits. Conductive AFM measurements showed that the presence of polymer residues on the surface of the Gr and h-BN monolayers resulted in significant resistance deviations over nanoscale regions.

15.
Phys Chem Chem Phys ; 19(40): 27442-27451, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28975173

RESUMEN

It is well-known that the nature and size of the counterions affect the ionic conductivity and glass transition temperature of ionic polymers in a significant manner. However, the microscopic origin of the underlying changes in the dynamics of chains and counterions is far from completely understood. Using coarse-grained molecular dynamics simulations of flexible and semi-flexible ionic polymers, we demonstrate that the glass transition temperature of ionic polymeric melts depends on the size of monovalent counterions in a non-monotonic manner. The glass transition temperature is found to be the highest for the smallest counterions and decreases with an increase in the counterion radii up to a point, after which the glass transition temperature increases with a further increase in the radii. This behavior is because the counterions have significant effects on the coupled dynamics of the charges on the chains and counterions. In particular, increase in the radii of the counterions leads to strongly coupled dynamics between the charges on the chains and the counterions. The static dielectric constant of the polymer melts also has a significant effect on the coupling and the glass transition temperature. The glass transition temperature is predicted to decrease with an increase in the dielectric constant. This, in turn, leads to an increase in the diffusion constant of the counterions at a given temperature. Backbone rigidity is shown to increase the glass transition temperature and decrease the coupling. Furthermore, faster counterion dynamics is predicted for the melts of semi-flexible chains in comparison with flexible chains at the same segmental relaxation time. As the semi-flexible chains tend to have a longer segmental relaxation time, semi-flexible polymers with high dielectric constants are predicted to have diffusion constants of counterions comparable with flexible polymers.

16.
J Chem Phys ; 146(20): 203201, 2017 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-28571333

RESUMEN

In recent years it has become clear that the interfacial layer formed around nanoparticles in polymer nanocomposites (PNCs) is critical for controlling their macroscopic properties. The interfacial layer occupies a significant volume fraction of the polymer matrix in PNCs and creates strong intrinsic heterogeneity in their structure and dynamics. Here, we focus on analysis of the structure and dynamics of the interfacial region in model PNCs with well-dispersed, spherical nanoparticles with attractive interactions. First, we discuss several experimental techniques that provide structural and dynamic information on the interfacial region in PNCs. Then, we discuss the role of various microscopic parameters in controlling structure and dynamics of the interfacial layer. The analysis presented emphasizes the importance of the polymer-nanoparticle interactions for the slowing down dynamics in the interfacial region, while the thickness of the interfacial layer appears to be dependent on chain rigidity, and has been shown to increase with cooling upon approaching the glass transition. Aside from chain rigidity and polymer-nanoparticle interactions, the interfacial layer properties are also affected by the molecular weight of the polymer and the size of the nanoparticles. In the final part of this focus article, we emphasize the important challenges in the field of polymer nanocomposites and a potential analogy with the behavior observed in thin films.

17.
J Chem Phys ; 146(6): 064902, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28201898

RESUMEN

We report a theoretical approach for analyzing impedance of ionic liquids (ILs) and charged polymers such as polymerized ionic liquids (PolyILs) within linear response. The approach is based on the Rayleigh dissipation function formalism, which provides a computational framework for a systematic study of various factors, including polymer dynamics, in affecting the impedance. We present an analytical expression for the impedance within linear response by constructing a one-dimensional model for ionic transport in ILs/PolyILs. This expression is used to extract mutual diffusion constants, the length scale of mutual diffusion, and thicknesses of a low-dielectric layer on the electrodes from the broadband dielectric spectroscopy measurements done for an IL and three PolyILs. Also, static dielectric permittivities of the IL and the PolyILs are determined. The extracted mutual diffusion constants are compared with the self-diffusion constants of ions measured using pulse field gradient (PFG) fluorine nuclear magnetic resonance (NMR). For the first time, excellent agreement between the diffusivities extracted from the Electrode Polarization spectra (EPS) of IL/PolyILs and those measured using the PFG-NMR are found, which allows the use of the EPS and the PFG-NMR techniques in a complimentary manner for a general understanding of the ionic transport.

18.
Proc Natl Acad Sci U S A ; 111(49): 17402-7, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25422420

RESUMEN

We present the discovery of an unusually large isotope effect in the structural relaxation and the glass transition temperature Tg of water. Dielectric relaxation spectroscopy of low-density as well as of vapor-deposited amorphous water reveal Tg differences of 10 ± 2 K between H2O and D2O, sharply contrasting with other hydrogen-bonded liquids for which H/D exchange increases Tg by typically less than 1 K. We show that the large isotope effect and the unusual variation of relaxation times in water at low temperatures can be explained in terms of quantum effects. Thus, our findings shed new light on water's peculiar low-temperature dynamics and the possible role of quantum effects in its structural relaxation, and possibly in dynamics of other low-molecular-weight liquids.

19.
Nano Lett ; 16(6): 3630-7, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27203453

RESUMEN

The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively studied. However, not much is known about the origin of this effect below Tg. In this Letter, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.

20.
Phys Rev Lett ; 116(23): 237601, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27341258

RESUMEN

One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results, we unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA