Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mater Horiz ; 11(3): 847-854, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38037761

RESUMEN

The large-scale employment of 3D printed inorganic thermoelectrics is primarily constrained because of their lower efficiencies as compared to those fabricated from conventional methods such as spark plasma sintering and hot-pressing. This originates from the significant challenge in the densification of printed parts, particularly through the direct-ink-writing fabrication process, which demands a high binder content for printability. To achieve high-density printed thermoelectrics, the ink formulation process often involves the addition of substantial filler content and sintering aids, coupled with prolonged sintering periods. Here, we propose a strategy to resolve the low densification issue of 3D printed thermoelectrics through a binder-less and sintering aid-free thermoelectric nanowire ink system that can achieve dense thermoelectric structures (up to 82.5% theoretical density). The increase in density and corresponding enhancement of thermoelectric material efficiency are attained in a more tunable and controlled manner without compromising the material composition. A high filler-derived density index (FDI) of 2.51 is also achieved, implying the potential to obtain high-density parts with minimal filler content, thus unlocking a cascade of profound impacts. Crucially, this advancement enables the possibilities of anisotropic engineering in thermoelectric materials, thereby shattering the limitations that have hindered the widespread adoption of 3D printed inorganic thermoelectrics.

2.
Mater Horiz ; 11(13): 3187, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38775075

RESUMEN

Correction for 'Thermoelectric nanowires for dense 3D printed architectures' by Danwei Zhang et al., Mater. Horiz., 2024, 11, 847-854, https://doi.org/10.1039/D3MH01646C.

3.
Adv Sci (Weinh) ; 11(23): e2400870, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38553790

RESUMEN

Thermoelectric materials are highly promising for waste heat harvesting. Although thermoelectric materials research has expanded over the years, bismuth telluride-based alloys are still the best for near-room-temperature applications. In this work, a ≈38% enhancement of the average ZT (300-473 K) to 1.21 is achieved by mixing Bi0.4Sb1.6Te3 with an emerging thermoelectric material Sb2Si2Te6, which is significantly higher than that of most BiySb2-yTe3-based composites. This enhancement is facilitated by the unique interface region between the Bi0.4Sb1.6Te3 matrix and Sb2Si2Te6-based precipitates with an orderly atomic arrangement, which promotes the transport of charge carriers with minimal scattering, overcoming a common factor that is limiting ZT enhancement in such composites. At the same time, high-density dislocations in the same region can effectively scatter the phonons, decoupling the electron-phonon transport. This results in a ≈56% enhancement of the thermoelectric quality factor at 373 K, from 0.41 for the pristine sample to 0.64 for the composite sample. A single-leg device is fabricated with a high efficiency of 5.4% at ΔT = 164 K further demonstrating the efficacy of the Sb2Si2Te6 compositing strategy and the importance of the precipitate-matrix interface microstructure in improving the performance of materials for relatively low-temperature applications.

4.
Nanoscale ; 14(2): 410-418, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34929726

RESUMEN

Robust electronic transport properties is a crucial in designing high performance thermoelectrics. A key similarity between superconductor and thermoelectric lies in their generally high electrical conductivity, even at above its superconducting temperature. In this work, we design a nanocomposite between Nb5Ge3 and GeTe-based thermoelectric to improve its thermoelectric figure of merit zT. Phase and microstructural characterization shows distinct Nb5Ge3 precipitates embed in Ge0.9Sb0.1Te matrix. In addition, experimental electronic and thermal transport analysis, together with density functional theory calculation were employed to show the synergistic effect of doping Sb and Nb5Ge3 nanocomposite approach. 10% Sb doping was found to optimize the electronic properties of the GeTe-based matrix. Further addition of 2 wt% Nb5Ge3 nanocomposite to the matrix enhances the phonon scattering, which consequently lowers the lattice thermal conductivity, which results in zT of up to 2.0 at 723 K. Such superconductor nanocomposite approach shown in this work can be employed to enhance the properties of other thermoelectric materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA