Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nucleic Acids Res ; 48(16): 8883-8900, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32766782

RESUMEN

Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic information into a catalog of microbial traits. To demonstrate the applicability of DRAM across metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil community and previously published human gut metagenomes. We show that DRAM accurately assigned microbial contributions to geochemical cycles and automated the partitioning of gut microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning microbiome function.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Genómica/métodos , Metabolómica/métodos , Programas Informáticos , Microbiología del Suelo , Virus/clasificación , Humanos , Metagenoma , Anotación de Secuencia Molecular/métodos
2.
J Am Soc Nephrol ; 30(8): 1385-1397, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31239387

RESUMEN

BACKGROUND: Evidence suggests that antimicrobial peptides, components of the innate immune response, protect the kidneys and bladder from bacterial challenge. We previously identified ribonuclease 7 (RNase 7) as a human antimicrobial peptide that has bactericidal activity against uropathogenic Escherichia coli (UPEC). Functional studies assessing RNase 7's contributions to urinary tract defense are limited. METHODS: To investigate RNase 7's role in preventing urinary tract infection (UTI), we quantified urinary RNase 7 concentrations in 29 girls and adolescents with a UTI history and 29 healthy female human controls. To assess RNase 7's antimicrobial activity in vitro in human urothelial cells, we used siRNA to silence urothelial RNase 7 production and retroviral constructs to stably overexpress RNase 7; we then evaluated UPEC's ability to bind and invade these cells. For RNase 7 in vivo studies, we developed humanized RNase 7 transgenic mice, subjected them to experimental UTI, and enumerated UPEC burden in the urine, bladder, and kidneys. RESULTS: Compared with controls, study participants with a UTI history had 1.5-fold lower urinary RNase 7 concentrations. When RNase 7 was silenced in vitro, the percentage of UPEC binding or invading human urothelial cells increased; when cells overexpressed RNase 7, UPEC attachment and invasion decreased. In the transgenic mice, we detected RNase 7 expression in the kidney's intercalated cells and bladder urothelium. RNase 7 humanized mice exhibited marked protection from UPEC. CONCLUSIONS: These findings provide evidence that RNase 7 has a role in kidney and bladder host defense against UPEC and establish a foundation for investigating RNase 7 as a UTI prognostic marker or nonantibiotic-based therapy.


Asunto(s)
Infecciones por Escherichia coli/enzimología , Riñón/enzimología , Ribonucleasas/genética , Vejiga Urinaria/enzimología , Infecciones Urinarias/enzimología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena , Adolescente , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/genética , Niño , Preescolar , Femenino , Silenciador del Gen , Humanos , Inmunidad Innata , Lactante , Riñón/microbiología , Masculino , Ratones , Ratones Transgénicos , Fenotipo , Pronóstico , Vejiga Urinaria/microbiología , Urotelio/metabolismo , Urotelio/patología , Adulto Joven
3.
Nucleic Acids Res ; 42(5): 3261-71, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24335280

RESUMEN

Elongation factor P (EF-P) is a conserved ribosome-binding protein that structurally mimics tRNA to enable the synthesis of peptides containing motifs that otherwise would induce translational stalling, including polyproline. In many bacteria, EF-P function requires post-translational modification with (R)-ß-lysine by the lysyl-tRNA synthetase paralog PoxA. To investigate how recognition of EF-P by PoxA evolved from tRNA recognition by aminoacyl-tRNA synthetases, we compared the roles of EF-P/PoxA polar contacts with analogous interactions in a closely related tRNA/synthetase complex. PoxA was found to recognize EF-P solely via identity elements in the acceptor loop, the domain of the protein that interacts with the ribosome peptidyl transferase center and mimics the 3'-acceptor stem of tRNA. Although the EF-P acceptor loop residues required for PoxA recognition are highly conserved, their conservation was found to be independent of the phylogenetic distribution of PoxA. This suggests EF-P first evolved tRNA mimicry to optimize interactions with the ribosome, with PoxA-catalyzed aminoacylation evolving later as a secondary mechanism to further improve ribosome binding and translation control.


Asunto(s)
Evolución Molecular , Lisina-ARNt Ligasa/química , Imitación Molecular , Factores de Elongación de Péptidos/química , Biosíntesis de Proteínas , Aspartato-ARNt Ligasa/química , Aspartato-ARNt Ligasa/metabolismo , Sitios de Unión , Dominio Catalítico , Modelos Moleculares , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Aminoacilación de ARN de Transferencia
4.
Microbiome ; 11(1): 114, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210515

RESUMEN

BACKGROUND: The murine CBA/J mouse model widely supports immunology and enteric pathogen research. This model has illuminated Salmonella interactions with the gut microbiome since pathogen proliferation does not require disruptive pretreatment of the native microbiota, nor does it become systemic, thereby representing an analog to gastroenteritis disease progression in humans. Despite the value to broad research communities, microbiota in CBA/J mice are not represented in current murine microbiome genome catalogs. RESULTS: Here we present the first microbial and viral genomic catalog of the CBA/J murine gut microbiome. Using fecal microbial communities from untreated and Salmonella-infected, highly inflamed mice, we performed genomic reconstruction to determine the impacts on gut microbiome membership and functional potential. From high depth whole community sequencing (~ 42.4 Gbps/sample), we reconstructed 2281 bacterial and 4516 viral draft genomes. Salmonella challenge significantly altered gut membership in CBA/J mice, revealing 30 genera and 98 species that were conditionally rare and unsampled in non-inflamed mice. Additionally, inflamed communities were depleted in microbial genes that modulate host anti-inflammatory pathways and enriched in genes for respiratory energy generation. Our findings suggest decreases in butyrate concentrations during Salmonella infection corresponded to reductions in the relative abundance in members of the Alistipes. Strain-level comparison of CBA/J microbial genomes to prominent murine gut microbiome databases identified newly sampled lineages in this resource, while comparisons to human gut microbiomes extended the host relevance of dominant CBA/J inflammation-resistant strains. CONCLUSIONS: This CBA/J microbiome database provides the first genomic sampling of relevant, uncultivated microorganisms within the gut from this widely used laboratory model. Using this resource, we curated a functional, strain-resolved view on how Salmonella remodels intact murine gut communities, advancing pathobiome understanding beyond inferences from prior amplicon-based approaches. Salmonella-induced inflammation suppressed Alistipes and other dominant members, while rarer commensals like Lactobacillus and Enterococcus endure. The rare and novel species sampled across this inflammation gradient advance the utility of this microbiome resource to benefit the broad research needs of the CBA/J scientific community, and those using murine models for understanding the impact of inflammation on the gut microbiome more generally. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Ratones , Microbioma Gastrointestinal/genética , Modelos Animales de Enfermedad , Ratones Endogámicos CBA , Inflamación , Bacteroidetes
5.
mSystems ; 7(4): e0051622, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35861508

RESUMEN

Rivers have a significant role in global carbon and nitrogen cycles, serving as a nexus for nutrient transport between terrestrial and marine ecosystems. Although rivers have a small global surface area, they contribute substantially to worldwide greenhouse gas emissions through microbially mediated processes within the river hyporheic zone. Despite this importance, research linking microbial and viral communities to specific biogeochemical reactions is still nascent in these sediment environments. To survey the metabolic potential and gene expression underpinning carbon and nitrogen biogeochemical cycling in river sediments, we collected an integrated data set of 33 metagenomes, metaproteomes, and paired metabolomes. We reconstructed over 500 microbial metagenome-assembled genomes (MAGs), which we dereplicated into 55 unique, nearly complete medium- and high-quality MAGs spanning 12 bacterial and archaeal phyla. We also reconstructed 2,482 viral genomic contigs, which were dereplicated into 111 viral MAGs (vMAGs) of >10 kb in size. As a result of integrating gene expression data with geochemical and metabolite data, we created a conceptual model that uncovered new roles for microorganisms in organic matter decomposition, carbon sequestration, nitrogen mineralization, nitrification, and denitrification. We show how these metabolic pathways, integrated through shared resource pools of ammonium, carbon dioxide, and inorganic nitrogen, could ultimately contribute to carbon dioxide and nitrous oxide fluxes from hyporheic sediments. Further, by linking viral MAGs to these active microbial hosts, we provide some of the first insights into viral modulation of river sediment carbon and nitrogen cycling. IMPORTANCE Here we created HUM-V (hyporheic uncultured microbial and viral), an annotated microbial and viral MAG catalog that captures strain and functional diversity encoded in these Columbia River sediment samples. Demonstrating its utility, this genomic inventory encompasses multiple representatives of dominant microbial and archaeal phyla reported in other river sediments and provides novel viral MAGs that can putatively infect these. Furthermore, we used HUM-V to recruit gene expression data to decipher the functional activities of these MAGs and reconstruct their active roles in Columbia River sediment biogeochemical cycling. Ultimately, we show the power of MAG-resolved multi-omics to uncover interactions and chemical handoffs in river sediments that shape an intertwined carbon and nitrogen metabolic network. The accessible microbial and viral MAGs in HUM-V will serve as a community resource to further advance more untargeted, activity-based measurements in these, and related, freshwater terrestrial-aquatic ecosystems.


Asunto(s)
Ecosistema , Ríos , Dióxido de Carbono/metabolismo , Archaea/genética , Ciclo del Nitrógeno , Nitrógeno/metabolismo
6.
Science ; 376(6589): 156-162, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35389782

RESUMEN

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.


Asunto(s)
Genoma Viral , Virus ARN , Virus , Evolución Biológica , Ecosistema , Océanos y Mares , Filogenia , ARN , Virus ARN/genética , Viroma/genética , Virus/genética
7.
Cell Rep ; 32(3): 107939, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32698001

RESUMEN

The first cultivated representative of the enigmatic phylum Saccharibacteria (formerly TM7) was isolated from humans and revealed an ultra-small cell size (200-300 nm), a reduced genome with limited biosynthetic capabilities, and a unique parasitic lifestyle. TM7x was the only cultivated member of the candidate phyla radiation (CPR), estimated to encompass 26% of the domain Bacteria. Here we report on divergent genomes from major lineages across the Saccharibacteria phylum in humans and mammals, as well as from ancient dental calculus. These lineages are present at high prevalence within hosts. Direct imaging reveals that all groups are ultra-small in size, likely feeding off commensal bacteria. Analyses suggest that multiple acquisition events in the past led to the current wide diversity, with convergent evolution of key functions allowing Saccharibacteria from the environment to adapt to mammals. Ultra-small, parasitic CPR bacteria represent a relatively unexplored paradigm of prokaryotic interactions within mammalian microbiomes.


Asunto(s)
Adaptación Fisiológica/genética , Tamaño del Genoma , Genoma Bacteriano , Interacciones Huésped-Patógeno/genética , Mamíferos/microbiología , Acetobacteraceae/genética , Animales , Sistemas de Secreción Bacterianos/genética , Biodiversidad , Microbiología Ambiental , Humanos , Boca/microbiología , Filogenia , Filogeografía , Análisis de Componente Principal
8.
mSphere ; 4(6)2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852806

RESUMEN

Bacteria of the phylum Verrucomicrobia are prevalent and are particularly common in soil and freshwater environments. Their cosmopolitan distribution and reported capacity for polysaccharide degradation suggests members of Verrucomicrobia are important contributors to carbon cycling across Earth's ecosystems. Despite their prevalence, the Verrucomicrobia are underrepresented in isolate collections and genome databases; consequently, their ecophysiological roles may not be fully realized. Here, we expand genomic sampling of the Verrucomicrobia phylum by describing a novel genus, "Candidatus Marcellius," belonging to the order Opitutales "Ca. Marcellius" was recovered from a shale-derived produced fluid metagenome collected 313 days after hydraulic fracturing, the deepest environment from which a member of the Verrucomicrobia has been recovered to date. We uncover genomic attributes that may explain the capacity of this organism to inhabit a shale gas well, including the potential for utilization of organic polymers common in hydraulic fracturing fluids, nitrogen fixation, adaptation to high salinities, and adaptive immunity via CRISPR-Cas. To illuminate the phylogenetic and environmental distribution of these metabolic and adaptive traits across the Verrucomicrobia phylum, we performed a comparative genomic analysis of 31 publicly available, nearly complete Verrucomicrobia genomes. Our genomic findings extend the environmental distribution of the Verrucomicrobia 2.3 kilometers into the terrestrial subsurface. Moreover, we reveal traits widely encoded across members of the Verrucomicrobia, including the capacity to degrade hemicellulose and to adapt to physical and biological environmental perturbations, thereby contributing to the expansive habitat range reported for this phylum.IMPORTANCE The Verrucomicrobia phylum of bacteria is widespread in many different ecosystems; however, its role in microbial communities remains poorly understood. Verrucomicrobia are often low-abundance community members, yet previous research suggests they play a major role in organic carbon degradation. While Verrucomicrobia remain poorly represented in culture collections, numerous genomes have been reconstructed from metagenomic data sets in recent years. The study of genomes from across the phylum allows for an extensive assessment of their potential ecosystem roles. The significance of this work is (i) the recovery of a novel genus of Verrucomicrobia from 2.3 km in the subsurface with the ability to withstand the extreme conditions that characterize this environment, and (ii) the most extensive assessment of ecophysiological traits encoded by Verrucomicrobia genomes to date. We show that members of this phylum are specialist organic polymer degraders that can withstand a wider range of environmental conditions than previously thought.


Asunto(s)
Genoma Bacteriano , Metagenómica/métodos , Microbiología del Suelo , Verrucomicrobia/clasificación , Verrucomicrobia/genética , Biología Computacional , Genes Bacterianos , Genómica , Redes y Vías Metabólicas/genética
9.
Front Immunol ; 10: 1774, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417554

RESUMEN

Background: Exposure to stressful stimuli dysregulates inflammatory processes and alters the gut microbiota. Prebiotics, including long-chain fermentable fibers and milk oligosaccharides, have the potential to limit inflammation through modulation of the gut microbiota. To determine whether prebiotics attenuate stress-induced inflammation and microbiota perturbations, mice were fed either a control diet or a diet supplemented with galactooligosaccharides, polydextrose and sialyllactose (GOS+PDX+SL) or sialyllactose (SL) for 2 weeks prior to and during a 6-day exposure to a social disruption stressor. Spleens were collected for immunoreactivity assays. Colon contents were examined for stressor- and diet- induced changes in the gut microbiome and metabolome through 16S rRNA gene sequencing, shotgun metagenomic sequencing and UPLC-MS/MS. Results: Stress increased circulating IL-6 and enhanced splenocyte immunoreactivity to an ex vivo LPS challenge. Diets containing GOS+PDX+SL or SL alone attenuated these responses. Stress exposure resulted in large changes to the gut metabolome, including robust shifts in amino acids, peptides, nucleotides/nucleosides, tryptophan metabolites, and B vitamins. Multiple B vitamins were inversely associated with IL-6 and were augmented in mice fed either GOS+PDX+SL or SL diets. Stressed mice exhibited distinct microbial communities with lower abundances of Lactobacillus spp. and higher abundances of Bacteroides spp. Diet supplementation with GOS+PDX+SL, but not SL alone, orthogonally altered the microbiome and enhanced the growth of Bifidobacterium spp. Metagenome-assembled genomes (MAGs) from mice fed the GOS+PDX+SL diet unveiled genes in a Bifidobacterium MAG for de novo B vitamin synthesis. B vitamers directly attenuated the stressor-induced exacerbation of cytokine production in LPS-stimulated splenocytes. Conclusions: Overall, these data indicate that colonic metabolites, including B vitamins, are responsive to psychosocial stress. Dietary prebiotics reestablish colonic B vitamins and limit stress-induced inflammation.


Asunto(s)
Antiinflamatorios/uso terapéutico , Azúcares de la Dieta/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Oligosacáridos/uso terapéutico , Prebióticos/administración & dosificación , Estrés Psicológico/tratamiento farmacológico , Complejo Vitamínico B/metabolismo , Conducta Agonística , Animales , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Colon/metabolismo , Colon/microbiología , Heces/microbiología , Microbioma Gastrointestinal/inmunología , Glucanos/administración & dosificación , Glucanos/farmacología , Interleucina-6/sangre , Masculino , Metagenómica , Ratones Endogámicos C57BL , Distribución Aleatoria , Ribotipificación , Método Simple Ciego , Conducta Social , Especificidad de la Especie , Estrés Psicológico/inmunología , Estrés Psicológico/metabolismo , Espectrometría de Masas en Tándem , Complejo Vitamínico B/uso terapéutico
10.
mBio ; 9(6)2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30401770

RESUMEN

Microbial carbon degradation and methanogenesis in wetland soils generate a large proportion of atmospheric methane, a highly potent greenhouse gas. Despite their potential to mitigate greenhouse gas emissions, knowledge about methane-consuming methanotrophs is often limited to lower-resolution single-gene surveys that fail to capture the taxonomic and metabolic diversity of these microorganisms in soils. Here our objective was to use genome-enabled approaches to investigate methanotroph membership, distribution, and in situ activity across spatial and seasonal gradients in a freshwater wetland near Lake Erie. 16S rRNA gene analyses demonstrated that members of the methanotrophic Methylococcales were dominant, with the dominance largely driven by the relative abundance of four taxa, and enriched in oxic surface soils. Three methanotroph genomes from assembled soil metagenomes were assigned to the genus Methylobacter and represented the most abundant methanotrophs across the wetland. Paired metatranscriptomes confirmed that these Old Woman Creek (OWC) Methylobacter members accounted for nearly all the aerobic methanotrophic activity across two seasons. In addition to having the capacity to couple methane oxidation to aerobic respiration, these new genomes encoded denitrification potential that may sustain energy generation in soils with lower dissolved oxygen concentrations. We further show that Methylobacter members that were closely related to the OWC members were present in many other high-methane-emitting freshwater and soil sites, suggesting that this lineage could participate in methane consumption in analogous ecosystems. This work contributes to the growing body of research suggesting that Methylobacter may represent critical mediators of methane fluxes in freshwater saturated sediments and soils worldwide.IMPORTANCE Here we used soil metagenomics and metatranscriptomics to uncover novel members within the genus Methylobacter We denote these closely related genomes as members of the lineage OWC Methylobacter Despite the incredibly high microbial diversity in soils, here we present findings that unexpectedly showed that methane cycling was primarily mediated by a single genus for both methane production ("Candidatus Methanothrix paradoxum") and methane consumption (OWC Methylobacter). Metatranscriptomic analyses revealed that decreased methanotrophic activity rather than increased methanogenic activity possibly contributed to the greater methane emissions that we had previously observed in summer months, findings important for biogeochemical methane models. Although members of this Methylococcales order have been cultivated for decades, multi-omic approaches continue to illuminate the methanotroph phylogenetic and metabolic diversity harbored in terrestrial and marine ecosystems.


Asunto(s)
Metano/metabolismo , Methylobacteriaceae/metabolismo , Microbiología del Suelo , Suelo/química , Humedales , ADN Bacteriano/genética , Agua Dulce , Perfilación de la Expresión Génica , Genoma Bacteriano , Metagenómica , Methylobacteriaceae/genética , Ohio , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
mSystems ; 3(5)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30320215

RESUMEN

Rapidly thawing permafrost harbors ∼30 to 50% of global soil carbon, and the fate of this carbon remains unknown. Microorganisms will play a central role in its fate, and their viruses could modulate that impact via induced mortality and metabolic controls. Because of the challenges of recovering viruses from soils, little is known about soil viruses or their role(s) in microbial biogeochemical cycling. Here, we describe 53 viral populations (viral operational taxonomic units [vOTUs]) recovered from seven quantitatively derived (i.e., not multiple-displacement-amplified) viral-particle metagenomes (viromes) along a permafrost thaw gradient at the Stordalen Mire field site in northern Sweden. Only 15% of these vOTUs had genetic similarity to publicly available viruses in the RefSeq database, and ∼30% of the genes could be annotated, supporting the concept of soils as reservoirs of substantial undescribed viral genetic diversity. The vOTUs exhibited distinct ecology, with different distributions along the thaw gradient habitats, and a shift from soil-virus-like assemblages in the dry palsas to aquatic-virus-like assemblages in the inundated fen. Seventeen vOTUs were linked to microbial hosts (in silico), implicating viruses in infecting abundant microbial lineages from Acidobacteria, Verrucomicrobia, and Deltaproteobacteria, including those encoding key biogeochemical functions such as organic matter degradation. Thirty auxiliary metabolic genes (AMGs) were identified and suggested virus-mediated modulation of central carbon metabolism, soil organic matter degradation, polysaccharide binding, and regulation of sporulation. Together, these findings suggest that these soil viruses have distinct ecology, impact host-mediated biogeochemistry, and likely impact ecosystem function in the rapidly changing Arctic. IMPORTANCE This work is part of a 10-year project to examine thawing permafrost peatlands and is the first virome-particle-based approach to characterize viruses in these systems. This method yielded >2-fold-more viral populations (vOTUs) per gigabase of metagenome than vOTUs derived from bulk-soil metagenomes from the same site (J. B. Emerson, S. Roux, J. R. Brum, B. Bolduc, et al., Nat Microbiol 3:870-880, 2018, https://doi.org/10.1038/s41564-018-0190-y). We compared the ecology of the recovered vOTUs along a permafrost thaw gradient and found (i) habitat specificity, (ii) a shift in viral community identity from soil-like to aquatic-like viruses, (iii) infection of dominant microbial hosts, and (iv) carriage of host metabolic genes. These vOTUs can impact ecosystem carbon processing via top-down (inferred from lysing dominant microbial hosts) and bottom-up (inferred from carriage of auxiliary metabolic genes) controls. This work serves as a foundation which future studies can build upon to increase our understanding of the soil virosphere and how viruses affect soil ecosystem services.

12.
Nat Microbiol ; 3(11): 1274-1284, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30356154

RESUMEN

Because of their agricultural value, there is a great body of research dedicated to understanding the microorganisms responsible for rumen carbon degradation. However, we lack a holistic view of the microbial food web responsible for carbon processing in this ecosystem. Here, we sampled rumen-fistulated moose, allowing access to rumen microbial communities actively degrading woody plant biomass in real time. We resolved 1,193 viral contigs and 77 unique, near-complete microbial metagenome-assembled genomes, many of which lacked previous metabolic insights. Plant-derived metabolites were measured with NMR and carbohydrate microarrays to quantify the carbon nutrient landscape. Network analyses directly linked measured metabolites to expressed proteins from these unique metagenome-assembled genomes, revealing a genome-resolved three-tiered carbohydrate-fuelled trophic system. This provided a glimpse into microbial specialization into functional guilds defined by specific metabolites. To validate our proteomic inferences, the catalytic activity of a polysaccharide utilization locus from a highly connected metabolic hub genome was confirmed using heterologous gene expression. Viral detected proteins and linkages to microbial hosts demonstrated that phage are active controllers of rumen ecosystem function. Our findings elucidate the microbial and viral members, as well as their metabolic interdependencies, that support in situ carbon degradation in the rumen ecosystem.


Asunto(s)
Carbono/metabolismo , Consorcios Microbianos , Rumen , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Interacciones Microbiota-Huesped , Redes y Vías Metabólicas , Metagenómica , Filogenia , Proteómica , Rumen/metabolismo , Rumen/microbiología , Rumen/virología , Rumiantes , Virus/clasificación , Virus/genética , Virus/aislamiento & purificación , Virus/metabolismo , Madera/metabolismo
13.
Nat Microbiol ; 3(8): 870-880, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013236

RESUMEN

Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood1-7. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans8-10, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling.


Asunto(s)
Carbono/metabolismo , Perfilación de la Expresión Génica/métodos , Hielos Perennes/virología , Virus/clasificación , Bacterias/virología , Ciclo del Carbono , Cambio Climático , Ecosistema , Genoma Viral , Glicósido Hidrolasas/genética , Especificidad del Huésped , Filogenia , Microbiología del Suelo , Suecia , Proteínas Virales/genética , Virus/genética , Virus/metabolismo
14.
Microbiome ; 5(1): 47, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28449706

RESUMEN

BACKGROUND: Salmonella is one of the most significant food-borne pathogens to affect humans and agriculture. While it is well documented that Salmonella infection triggers host inflammation, the impacts on the gut environment are largely unknown. A CBA/J mouse model was used to evaluate intestinal responses to Salmonella-induced inflammation. In parallel, we evaluated chemically induced inflammation by dextran sodium sulfate (DSS) and a non-inflammation control. We profiled gut microbial diversity by sequencing 16S ribosomal ribonucleic acid (rRNA) genes from fecal and cecal samples. These data were correlated to the inflammation marker lipocalin-2 and short-chain fatty acid concentrations. RESULTS: We demonstrated that inflammation, chemically or biologically induced, restructures the chemical and microbial environment of the gut over a 16-day period. We observed that the ten mice within the Salmonella treatment group had a variable Salmonella relative abundance, with three high responding mice dominated by >46% Salmonella at later time points and the remaining seven mice denoted as low responders. These low- and high-responding Salmonella groups, along with the chemical DSS treatment, established an inflammation gradient with chemical and low levels of Salmonella having at least 3 log-fold lower lipocalin-2 concentration than the high-responding Salmonella mice. Total short-chain fatty acid and individual butyrate concentrations each negatively correlated with inflammation levels. Microbial communities were also structured along this inflammation gradient. Low levels of inflammation, regardless of chemical or biological induction, enriched for Akkermansia spp. in the Verrucomicrobiaceae and members of the Bacteroidetes family S24-7. Relative to the control or low inflammation groups, high levels of Salmonella drastically decreased the overall microbial diversity, specifically driven by the reduction of Alistipes and Lachnospiraceae in the Bacteroidetes and Firmicutes phyla, respectively. Conversely, members of the Enterobacteriaceae and Lactobacillus were positively correlated to high levels of Salmonella-induced inflammation. CONCLUSIONS: Our results show that enteropathogenic infection and intestinal inflammation are interrelated factors modulating gut homeostasis. These findings may prove informative with regard to prophylactic or therapeutic strategies to prevent disruption of microbial communities, or promote their restoration.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Lipocalina 2/metabolismo , Salmonelosis Animal/inmunología , Análisis de Secuencia de ADN/métodos , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Ciego/microbiología , ADN Bacteriano/genética , ADN Ribosómico/genética , Sulfato de Dextran/efectos adversos , Heces/microbiología , Ratones , ARN Ribosómico 16S/genética
15.
Nat Commun ; 8(1): 1567, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29146959

RESUMEN

The current paradigm, widely incorporated in soil biogeochemical models, is that microbial methanogenesis can only occur in anoxic habitats. In contrast, here we show clear geochemical and biological evidence for methane production in well-oxygenated soils of a freshwater wetland. A comparison of oxic to anoxic soils reveal up to ten times greater methane production and nine times more methanogenesis activity in oxygenated soils. Metagenomic and metatranscriptomic sequencing recover the first near-complete genomes for a novel methanogen species, and show acetoclastic production from this organism was the dominant methanogenesis pathway in oxygenated soils. This organism, Candidatus Methanothrix paradoxum, is prevalent across methane emitting ecosystems, suggesting a global significance. Moreover, in this wetland, we estimate that up to 80% of methane fluxes could be attributed to methanogenesis in oxygenated soils. Together, our findings challenge a widely held assumption about methanogenesis, with significant ramifications for global methane estimates and Earth system modeling.

16.
ISME J ; 11(3): 691-703, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27959345

RESUMEN

Ruminants have co-evolved with their gastrointestinal microbial communities that digest plant materials to provide energy for the host. Some arctic and boreal ruminants have already shown to be vulnerable to dietary shifts caused by changing climate, yet we know little about the metabolic capacity of the ruminant microbiome in these animals. Here, we use meta-omics approaches to sample rumen fluid microbial communities from Alaskan moose foraging along a seasonal lignocellulose gradient. Winter diets with increased hemicellulose and lignin strongly enriched for BS11, a Bacteroidetes family lacking cultivated or genomically sampled representatives. We show that BS11 are cosmopolitan host-associated bacteria prevalent in gastrointestinal tracts of ruminants and other mammals. Metagenomic reconstruction yielded the first four BS11 genomes; phylogenetically resolving two genera within this previously taxonomically undefined family. Genome-enabled metabolic analyses uncovered multiple pathways for fermenting hemicellulose monomeric sugars to short-chain fatty acids (SCFA), metabolites vital for ruminant energy. Active hemicellulosic sugar fermentation and SCFA production was validated by shotgun proteomics and rumen metabolites, illuminating the role BS11 have in carbon transformations within the rumen. Our results also highlight the currently unknown metabolic potential residing in the rumen that may be vital for sustaining host energy in response to a changing vegetative environment.


Asunto(s)
Bacteroidetes/metabolismo , Ciervos/microbiología , Microbioma Gastrointestinal , Polisacáridos/metabolismo , Rumen/microbiología , Animales , Regiones Árticas , Bacterias/clasificación , Bacteroidetes/clasificación , Cambio Climático , Ciervos/clasificación , Digestión , Ácidos Grasos Volátiles/metabolismo , Fermentación , Lignina/metabolismo , Metagenómica/métodos , Filogenia , Estaciones del Año
17.
Curr Opin Microbiol ; 31: 217-226, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27196505

RESUMEN

Microorganisms are the most diverse and abundant life forms on Earth. Yet, in many environments, only 0.1-1% of them have been cultivated greatly hindering our understanding of the microbial world. However, today cultivation is no longer a requirement for gaining access to information from the uncultivated majority. New genomic information from metagenomics and single cell genomics has provided insights into microbial metabolic cooperation and dependence, generating new avenues for cultivation efforts. Here we summarize recent advances from uncultivated phyla and discuss how this knowledge has influenced our understanding of the topology of the tree of life and metabolic diversity.


Asunto(s)
Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Metagenómica , Genoma Arqueal/genética , Genoma Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de la Célula Individual
18.
Nat Microbiol ; 2(11): 1458-1459, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29070823
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA