Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Phys Chem Chem Phys ; 20(41): 26696-26709, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30324204

RESUMEN

This study reports on investigation of the magnetic properties of layer-by-layer (LbL) assembled nanofilms comprising polyvinyl alcohol (PVA) and citrate-coated magnetite (cit-MAG) nanoparticles deposited onto silicon (SF sample) and glass (GF sample) substrates. DC magnetization measurements were performed over the temperature range of 4 K to 300 K, in the applied magnetic field range of ±60 kOe. The magnetic data of the as-synthesized cit-MAG nanoparticles (F sample) are also collected for comparison. The three as-fabricated samples reveal perfect superparamagnetic (SPM) behavior only around room temperature; at temperatures lower than 200 K the SPM scaling is not observed and all samples behave as interacting superparamagnetic (ISPM) materials. The evolution from the ISPM to the SPM regime is marked by a steady decrease in the hysteretic properties of all samples, with the temperature-dependence of the coercivity decreasing slower than the T1/2 behavior predicted for non-interacting superparamagnetic particles. The modified Bloch's law used to assess information on nanoparticles' surface spins gives the Bloch's exponent close to 2 (for the F and SF samples) and close to 1 (for the GF sample). Interestingly, the surface spin freezing temperature (Tf) is 8 ± 1 K for all samples. The magnetic behavior of all three samples can be described within the model picture of a core-shell structure for the cit-MAG nanoparticles; the core comprising magnetically-ordered spins whereas the shell behaving as a spin-glass-like system. However, the contribution of the shell magnetism to the effective magnetic properties is much more evident in the GF sample in which magnetic dipole-dipole interaction is three-times weaker than in the SF sample and two times weaker than in the F sample. In contrast, the strong magnetic dipole-dipole interaction in the SF sample affects the surface spins, hindering the onset of magnetically-ordered regions in the nanoparticle's shell, making the surface magnetism contribution negligible. The LbL-fabricated nanofilms herein reported and the presented analysis of their magnetic properties we envisage can support the engineering of magnetic nanofilms for multiple applications.

2.
Phys Chem Chem Phys ; 15(45): 19853-61, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24145704

RESUMEN

Multilayered nanocomposite films (thickness 50-90 nm) of cobalt ferrite nanoparticles (np-CoFe2O4, 18 nm) were deposited on top of interdigitated microelectrodes by the layer-by-layer technique in order to study their dielectric properties. For that purpose, two different types of nanocomposite films were prepared by assembling np-CoFe2O4 either with poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonic acid) or with polyaniline and sulfonated lignin. Despite the different film architectures, the morphology of both was dominated by densely-packed layers of nanoparticles surrounded by polyelectrolytes. The dominant effect of np-CoFe2O4 was also observed after impedance spectroscopy measurements, which revealed that dielectric behavior of the nanocomposites was largely influenced by the charge transport across nanoparticle-polyelectrolyte interfaces. For example, nanocomposites containing np-CoFe2O4 exhibited a single low-frequency relaxation process, with time constants exceeding 15 ms. At 1 kHz, the dielectric constant and the dissipation factor (tan δ) of these nanocomposites were 15 and 0.15, respectively. These values are substantially inferior to those reported for pressed pellets made exclusively of similar nanoparticles. Impedance data were further fitted with equivalent circuit models from which individual contributions of particle's bulk and interfaces to the charge transport within the nanocomposites could be evaluated. The present study evidences that such nanocomposites display a dielectric behavior dissimilar from that exhibited by their individual counterparts much likely due to enlarged nanoparticle-polyelectrolyte interfaces.


Asunto(s)
Cobalto/química , Compuestos Férricos/química , Nanocompuestos/química , Nanopartículas/química , Impedancia Eléctrica , Electrodos , Transporte de Electrón
3.
Nanomaterials (Basel) ; 13(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36770547

RESUMEN

Phosphates in high concentrations are harmful pollutants for the environment, and new and cheap solutions are currently needed for phosphate removal from polluted liquid media. Iron oxide nanoparticles show a promising capacity for removing phosphates from polluted media and can be easily separated from polluted media under an external magnetic field. However, they have to display a high surface area allowing high removal pollutant capacity while preserving their magnetic properties. In that context, the reproducible synthesis of magnetic iron oxide raspberry-shaped nanostructures (RSNs) by a modified polyol solvothermal method has been optimized, and the conditions to dope the latter with cobalt, zinc, and aluminum to improve the phosphate adsorption have been determined. These RSNs consist of oriented aggregates of iron oxide nanocrystals, providing a very high saturation magnetization and a superparamagnetic behavior that favor colloidal stability. Finally, the adsorption of phosphates as a function of pH, time, and phosphate concentration has been studied. The undoped and especially aluminum-doped RSNs were demonstrated to be very effective phosphate adsorbents, and they can be extracted from the media by applying a magnet.

4.
Polymers (Basel) ; 15(9)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37177309

RESUMEN

Eco-friendly chemical methods using FDA-approved Pluronic F127 (PLU) block copolymer have garnered much attention for simultaneously forming and stabilizing Au nanoparticles (AuNPs). Given the remarkable properties of AuNPs for usage in various fields, especially in biomedicine, we performed a systematic study to synthesize AuNP-PLU nanocomposites under optimized conditions using UV irradiation for accelerating the reaction. The use of UV irradiation at 254 nm resulted in several advantages over the control method conducted under ambient light (control). The AuNP-PLU-UV nanocomposite was produced six times faster, lasting 10 min, and exhibited lower size dispersion than the control. A set of experimental techniques was applied to determine the structure and morphology of the produced nanocomposites as affected by the UV irradiation. The MTT assay was conducted to estimate IC50 values of AuNP-PLU-UV in NIH 3T3 mouse embryonic fibroblasts, and the results suggest that the sample is more compatible with cells than control samples. Afterward, in vivo maternal and fetal toxicity assays were performed in rats to evaluate the effect of AuNP-PLU-UV formulation during pregnancy. Under the tested conditions, the treatment was found to be safe for the mother and fetus. As a proof of concept or application, the synthesized Au:PLU were tested as contrast agents with an X-ray computed tomography scan (X-ray CT).

5.
J Nanosci Nanotechnol ; 12(8): 6672-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22962805

RESUMEN

In this study we report an experimental approach capable of tuning dipolar interactions in hybrid magnetic nanofilms produced via layer-by-layer assembly of positively-charged maghemite nanoparticles and sodium sulfonated polystyrene onto glass and silicon substrates. Morphological and magnetic properties of the as prepared nanofilms were determined by Raman spectroscopy, atomic force microscopy, conventional and SQUID magnetometry. Maghemite nanoparticles form densely packed layers with voids between particles being filled by polymeric material as observed in atomic force microscopy images. Magnetic hysteresis loops and zero-field-cooled/field-cooled magnetization curves reveal a superparamagnetic behavior at room temperature. The energy barrier for the magnetic moment reversal of the nanofilms has been determined from the frequency dependent ac susceptibility and is related to the gamma-Fe2O3 nanoparticles concentration used in the colloidal dispersion throughout film fabrication. Variations on the interparticle distances have a direct effect on the interparticle dipolar interactions. A less concentrated colloid gives rise to large separated nanoparticles inside the nanofilm with a consequent reduction on the energy barrier for the magnetic moment reversal. The fabrication process exploring the control of the nanoparticle concentration can thus be used to tune the magnetic dipolar interactions in the nanofilms.

6.
Phys Chem Chem Phys ; 13(48): 21233-42, 2011 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22025281

RESUMEN

The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe(2)O(4)--10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe(2)O(4) nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe(2)O(4)/PSS bilayers (n) and/or by changing the CoFe(2)O(4) nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe(2)O(4) nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe(2)O(4) nanoparticles while growing multilayers of CoFe(2)O(4)/PSS was conducted using colloidal suspensions with CoFe(2)O(4) concentration in the range of 10(-8) to 10(-6) (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe(2)O(4) nanoparticles within the CoFe(2)O(4)/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe(2)O(4) nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film thickness increasing from about 20 to 120 nm while shifting from 3 to 10 CoFe(2)O(4)/PSS bilayers, using the 8.9 × 10(-6) (moles of cobalt ferrite per litre) suspension.


Asunto(s)
Cobalto/química , Compuestos Férricos/química , Nanopartículas del Metal/química , Tecnicas de Microbalanza del Cristal de Cuarzo , Adsorción , Ácidos Alcanesulfónicos/química , Coloides/química , Cinética , Poliestirenos/química
7.
J Phys Chem A ; 115(6): 1003-8, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21261312

RESUMEN

Nanosized maghemite (below 10 nm average diameter), surface-functionalized with meso-2,3-dimercaptosuccinic acid (DMSA), was investigated with respect to the content of DMSA molecules attached onto its surface and the onset of S-S bridges due to oxidation of neighboring S-H groups. To support our investigation, we introduced the use of photoacoustic spectroscopy to monitor thiol groups (S-H) conjugated with Raman spectroscopy to monitor the disulfide bridges (S-S). The normalized intensity (N(R)) of the Raman feature peaking at 500 cm(-1) was used to probe the S-S bridge whereas the normalized intensity (N(P)) of the photoacoustic band-S (0.42-0.65 µm) was used to probe the S-H moiety. The perfect linearity observed in the N(R) versus (1 - N(P)) plot strongly supports the oxidation process involving neighboring S-H groups as the DMSA surface grafting coefficient increases whereas the approach used in this report allows the evaluation of the [S-H]/[S-S] ratio. The observation of the reduction of the hydrodynamic diameter as the nominal DMSA-grafting increases supports the proposed model picture, in which the intraparticle (interparticle) S-S bridging takes place at higher (lower) DMSA-grafting values.


Asunto(s)
Compuestos Férricos/química , Modelos Químicos , Nanopartículas/química , Nanopartículas/ultraestructura , Succímero/química , Compuestos de Sulfhidrilo/química , Hidrodinámica , Microscopía Electrónica de Transmisión/métodos , Oxidación-Reducción , Análisis Espectral/métodos , Espectrometría Raman , Propiedades de Superficie , Difracción de Rayos X/métodos
8.
J Nanosci Nanotechnol ; 10(4): 2679-85, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20355484

RESUMEN

In this study we describe the fabrication and characterization of nanocomposites consisting of layer-by-layer assembled polyaniline, sulfonated polystyrene, and maghemite nanoparticle layers. In order to assemble the starting components via electrostatic interaction, stable magnetic fluid containing maghemite nanoparticles (d approximately = 7 nm) with either positive or negative surface charges was used as source of nanoparticles for the layer-by-layer assembly. The structure, morphology, electrical and magnetic properties of such nanocomposite films were investigated by UV-Vis spectroscopy, atomic force microscopy, electrical, and magnetic measurements. The amount of PANI, PSS and maghemite nanoparticles within the nanocomposite films increased almost linearly with the number of deposited layers. Atomic force microscopy image of typical polyaniline/maghemite nanocomposites reveal nanoparticles adsorbed all over the film surface. The as-produced nanocomposite exhibits electrical conductivity and superparamagnetism behavior at room temperature, the latter confirmed by the absence of magnetic hysteresis.

9.
J Biomed Mater Res A ; 108(2): 234-245, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31587469

RESUMEN

The therapeutic administration of cytokines has been introduced aiming to modulate the immune response system, seeking for different approaches to face pathologies such as cancer, auto immune and infectious diseases. The objective of this study was to investigate the effects of a stable oil-in-water (O/W) nanoemulsion system carrying the cytokine Interferon gamma (IFN-γ) on the activity of phagocytes and MCF-7 human breast cancer cells. Nanoemulsions were prepared through ultra-homogenization, and they consisted of distilled water, triglycerides of capric acid/caprylic, sorbitan-oleate, polysorbate 80, and 1-butanol. IFN-γ (100 ng ml-1 ) was incorporated into two O/W nanoemulsion formulations, and these formulations were characterized in terms of their preliminary and accelerated physicochemical stability, rheological properties, droplet size, polydispersity and surface charge. We identified the most optimal IFN-γ nanoemulsion (IFN-γNE2), which remained stable under extreme temperature variations for 90 days, contained an average dose of 97 ng ml-1 of IFN-γ and exhibited a biocompatible pH and a relative stable rheological profile. Cell viability and intracellular Ca2+ release assays conducted showed that IFN-γNE2 reduced the cell viability of MCF-7 cells without affecting the cell viability of phagocytes. Furthermore, IFN-γNE2 was able to induce cellular activity of phagocytes as evidenced by increased intracellular Ca2+ release in these cells. Our findings on this IFN-γ nanoemulsion suggest that it can be a promising therapeutic agent for immunostimulation and cancer treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Emulsiones/química , Factores Inmunológicos/administración & dosificación , Interferón gamma/administración & dosificación , Adulto , Antineoplásicos/farmacología , Células Cultivadas , Femenino , Humanos , Factores Inmunológicos/farmacología , Interferón gamma/farmacología , Células MCF-7 , Masculino , Neoplasias/tratamiento farmacológico , Adulto Joven
10.
Int J Pharm ; 587: 119709, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32739394

RESUMEN

In the present study, iron oxide nanoparticles, in the form of maghemite core coated with lauric acid (ION), were synthesized and loaded with finasteride (FIN) or dutasteride (DUT) as a novel drug delivery system for the topical treatment of alopecia. Additionally, developed formulations (FIN-ION and DUT-ION) were completely elaborated with components involved in the follicle metabolism, i.e., lauric acid, which acts as a 5α-reductase inhibitor, and iron which deficiency has been related to hair loss aggravation. Stability assessment conducted over the course of 90 days showed they are highly stable, with pH 7.4, constant EE% (>99%), and practically unchanged particle size and zeta potential. Besides drug distribution, the actual number of iron oxide nanoparticles, through a newly developed method using ferromagnetic resonance, was determined in each skin layer following permeation experiments. Despite the same donor concentration of colloids, nanoparticle distribution in the skin varied according to the loaded molecule. While DUT did not interfere with the nanoparticle natural tendency to accumulate within the hair follicle shafts, FIN presence hampered nanosystem interaction with the skin. Still, both formulations provided a higher skin drug penetration, compared to each respective control solution. Additionally, iron nanocarriers present a desirable visual characteristic, as the dark color aspect might instantly help disguise scarce hair follicle areas. These findings suggest the nanoformulations are highly promising for alopecia therapies.


Asunto(s)
Alopecia , Finasterida , Inhibidores de 5-alfa-Reductasa , Alopecia/tratamiento farmacológico , Dutasterida , Compuestos Férricos , Humanos
11.
J Nanosci Nanotechnol ; 7(3): 1069-71, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17450877

RESUMEN

Internalization of biocompatible magnetic nanoparticles by red blood cells (RBCs) is a key issue for opportunities of new applications in the biomedical field. In this study, we used in vitro tests to provide evidences of magnetic nanoparticle internalization by mice red blood cells. The internalization process depends upon the nanoparticle concentration and the nanoparticle hydrodynamic radii. The cell internalization of surface-coated maghemite nanoparticles was indirectly tracked by Raman spectroscopy and directly observed using transmission electron microscopy. The observation of nanoparticle cell uptaking using in vitro experiments represents an important breakthrough for the application of nanomagnetism in diagnosis and therapy of RBC-related diseases.


Asunto(s)
Eritrocitos/metabolismo , Nanopartículas del Metal/química , Animales , Transporte Biológico Activo , Materiales Biocompatibles Revestidos/química , Eritrocitos/ultraestructura , Técnicas In Vitro , Magnetismo , Ensayo de Materiales , Nanopartículas del Metal/ultraestructura , Ratones , Microscopía Electrónica , Nanotecnología , Espectrometría Raman
12.
Protein Pept Lett ; 23(7): 626-38, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27137130

RESUMEN

The aim of this study was to design and develop stable nanoemulsion formulations containing IFN-γ to probe their use as an immunomodulating agent. The nanoemulsions comprising distilled water, triglycerides of capric acid/caprylic, sobitan-oleate (SP), polysorbate 80 (TW) and propylene glycol (PG) were prepared through ultra-homogenization and characterized regarding droplet size, polydispersity, surface charge, preliminary and accelerated physical stability, and rheological properties. Stable nanoemulsions were selected to incorporate nano doses of IFN-γ (100 ng.mL-1). The influence of IFN-γ incorporated nanoemulsions on functional activity of mononuclear cell for Escherichia coli enteropathogenic was analyzed through superoxide release, phagocytosis, microbicidal activity and intracellular calcium release. The optimized formulation, comprising aqueous and oily phase of 10 % and 80 %, respectively, and surfactant mix ratio (SP/TW/PG) of 3.5/5.5/1.0, remained stable in extreme conditions during 90 days, displaying oil-in-water characteristics, biocompatible pH value, significant maintenance of its rheological profile, hydrodynamic radius of 205 nm, zeta potential of -40 mV and average dose of IFN-γ 91 ng.mL- The developed formulation did not alter the MN cell viability rates. Increased the superoxide release, phagocytosis index and intracellular calcium release of MN cells of human blood. Our findings indicate that the produced formulation improved the immunomodulatory activity of the IFN-γ.


Asunto(s)
Emulsiones/química , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/farmacología , Interferón gamma/administración & dosificación , Interferón gamma/farmacología , Vehículos Farmacéuticos/química , Adolescente , Adulto , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Fagocitos/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Adulto Joven
13.
Eur J Pharm Biopharm ; 103: 23-31, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27018329

RESUMEN

Phthalocyanine derivatives comprise the second generation of photosensitizer molecules employed in photodynamic therapy (PDT) and have attracted much attention due to their outstanding photosensitizing performance. Most phthalocyanines are hydrophobic compounds that require association to drug delivery systems for clinical use. In this study, formulations of Pluronic F127 micelles incorporated with chloroaluminum phthalocyanine, or else F127/AlClPc, were produced at optimized conditions aiming at efficient and biocompatible PDT colloidal systems. Absorption/emission spectroscopies, as well as dynamic light scattering were performed to evaluate the optimum conditions for the F127 micelle formation and AlClPc incorporation. The micelles formation was attained with F127 concentrations ranging from 50 to 150mgmL(-1). At these conditions, AlClPc photosensitizer molecules were encapsulated into the hydrophobic micelle core and, therefore, readily solubilized in physiological medium (PBS pH 7.2). Encapsulation efficiency of about 90% resulted from different AlClPc concentrations. Identification of singlet oxygen production by irradiated F127/AlClPc formulations indicated good applicability for PDT. In vitro tests conducted with A549 human lung carcinoma cell line incubated with the F127/AlClPc formulations, at different AlClPc loadings, followed by only 18min of light irradiation (660nm LED, fluence of 25.3J/cm(2)), showed a cellular damage as high as 90% for rather low dosages of AlClPc (0.1-5.0µgmL(-1)). Further, no cytotoxicity occurred on non-irradiated cells. These findings suggest those F127/AlClPc formulations are highly promising for PDT applications, since they are easily prepared and the incubation and irradiation times are significantly shortened.


Asunto(s)
Coloides/química , Indoles/química , Micelas , Compuestos Organometálicos/química , Fotoquimioterapia
14.
Carbohydr Polym ; 106: 305-11, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24721083

RESUMEN

Bionanocomposite films have been prepared by casting an aqueous suspension of acetylated starch (ST) and poly(vinyl alcohol) (PVA) loaded with graphene oxide (GO). A photochemical and reagentless method has been successfully performed to convert the GO phase into reduced graphene oxide (RGO). The nanocomposites have displayed improved thermal and electrical properties when the amount of the GO phase is increased and properly converted to RGO. The molecular-level interactions between components are mainly hydrogen-bonding type according to attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and Raman spectroscopies, as well as thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) has confirmed the effective mixing between the GO and the ST-PVA matrix. The thermal diffusivity and electrical resistivity of ST-GO nanocomposites have increased one order and decreased two orders of magnitude, respectively, after the photochemical treatment. These findings have confirmed the effectiveness of the proposed approach to produce starch-based nanocomposites with improved thermal and electrical properties.


Asunto(s)
Grafito/química , Nanocompuestos/química , Almidón/química , Acetilación , Impedancia Eléctrica , Calor , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Nanocompuestos/efectos de la radiación , Procesos Fotoquímicos , Alcohol Polivinílico/química , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Almidón/efectos de la radiación , Termogravimetría , Rayos Ultravioleta
15.
Langmuir ; 23(19): 9611-7, 2007 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-17696556

RESUMEN

In this study, we report on how surface-passivated and nonpassivated cobalt ferrite nanoparticles (8 nm diameter), suspended as ionic magnetic fluids and aged under low pH conditions, revealed different behavior as far as the time evolution of the iron/cobalt cation distribution, crystal quality, coercivity, and saturation magnetization are concerned. Different techniques were used to perform a detailed study regarding the chemical stability, structural stability, and surface and magnetic properties of the suspended nanoparticles as a function of the aging time. Properties of surface-passivated and nonpassivated nanoparticles were investigated by transmission electron microscopy, X-ray diffraction, atomic absorption spectrometry, magnetic measurements, Raman spectroscopy, and Mössbauer spectroscopy. Our data showed that the employed nanoparticle surface passivation process, besides the formation of an iron-rich surface layer, modifies the nanoparticle core as well, improving the crystal quality while modifying the Fe/Co cation distribution and the nanoparticle dissolution rate profile. Magnetic data showed that the saturation magnetization increases for surface-passivated nanoparticles in comparison to the nonpassivated ones, though coercivity decreases after passivation. These two observations were associated to changes in the cation distribution among the available tetrahedral and octahedral sites.


Asunto(s)
Cobalto/química , Compuestos Férricos/química , Magnetismo , Nanopartículas/química , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Transmisión , Soluciones/química , Propiedades de Superficie , Factores de Tiempo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA