Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 92(13): 8917-8922, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32460484

RESUMEN

Raman spectroscopy using aluminum nitride (AlN) optical waveguides was demonstrated for organic compound analysis. The AlN waveguide device was prepared by reactive sputtering deposition and complementary-metal-oxide semiconductor (CMOS) processes. A fundamental waveguide mode was observed over a broad visible spectrum and the waveguide evanescent wave was used to excite the Raman signals of the test analytes. The performance of the waveguide sensor was characterized by measuring the Raman spectra of the benzene derivative mixtures consisting of benzene, anisole, and toluene. The compositions and concentrations were resolved by correlating the obtained Raman spectrum with the characteristic Raman peaks associated with C-C, C-H, and C-O functional groups. With the advantages of real-time detection and enhanced Raman signal intensity, the AlN waveguides provided a sensor platform for nondestructive and online chemical compound monitoring.

2.
Appl Spectrosc ; 77(10): 1181-1193, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37487187

RESUMEN

A variety of innovative point-of-care (POC) solutions using Raman systems have been explored. However, the vast effort is in assay development, while studies of the characteristics required for Raman spectrometers to function in POC applications are lacking. In this study, we tested and compared the performance of eight commercial Raman spectrometers ranging in size from benchtop Raman microscopes to portable and handheld Raman spectrometers using paper fluidic cartridges, including their ability to detect cardiac troponin I and heart fatty acid binding protein, both of which are well-established biomarkers for evaluating cardiovascular health. Each spectrometer was evaluated in terms of excitation wavelength, laser characteristics, and ease of use to investigate POC utility. We found that the Raman spectrometers equipped with 780 and 785 nm laser sources exhibited a reduced background signal and provided higher sensitivity compared to those with 633 and 638 nm laser sources. Furthermore, the spectrometer equipped with the single acquisition line readout functionality showed improved performance when compared to the point scan spectrometers and allowed measurements to be made faster and easier. The portable and handheld spectrometers also showed similar detection sensitivity to the gold standard instrument. Lastly, we reduced the laser power for the spectrometer with single acquisition line readout capability to explore the system performance at a laser power that change the classification from a Class 3B laser device to a Class 3R device and found that it showed comparable performance. Overall, these findings show that portable Raman spectrometers have the potential to be used in POC settings with accuracy comparable to laboratory-grade instruments, are relatively low-cost, provide fast signal readout, are easy to use, and can facilitate access for underserved communities.

3.
J Biomed Opt ; 27(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36163635

RESUMEN

Significance: Point-of-care (POC) platforms utilizing optical biosensing strategies can achieve on-site detection of biomarkers to improve the quality of care for patients in low-resource settings. Aim: We aimed to develop a portable, multi-modal spectroscopic platform capable of performing Raman and fluorescence measurements from a single sample site. Approach: We designed the spectroscopic platform in OpticStudio using commercial optical components and built the system on a portable optical breadboard. Two excitation and collection arms were utilized to detect the two optical signals. The multi-modal functionality was validated using ratiometric Raman/fluorescence samples, and the potential utility was demonstrated using a model bioassay for cardiac troponin I. Results: The designed spectroscopic platform achieved a spectral resolution of 0.67 ± 0.2 nm across the Raman detection range (660 to 770 nm). The ratiometric Raman/fluorescence samples demonstrated no crosstalk between the two detector arms across a gradient of high molar concentrations. Testing of the model bioassay response showed that the integrated approach improved the linearity of the calibration curve from (R2 = 0.977) for the Raman only and (R2 = 0.972) for the fluorescence only to (R2 = 0.988) for the multi-modal approach. Conclusion: These findings demonstrate the potential impact of a multi-modal POC spectroscopic platform to improve the sensitivity and robustness necessary for biomarker detection.


Asunto(s)
Sistemas de Atención de Punto , Troponina I , Biomarcadores , Humanos , Espectrometría de Fluorescencia , Espectrometría Raman/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA