Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 580(7801): 52-55, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238942

RESUMEN

Conservation laws are deeply related to any symmetry present in a physical system1,2. Analogously to electrons in atoms exhibiting spin symmetries3, it is possible to consider neutrons and protons in the atomic nucleus as projections of a single fermion with an isobaric spin (isospin) of t = 1/2 (ref. 4). Every nuclear state is thus characterized by a total isobaric spin T and a projection Tz-two quantities that are largely conserved in nuclear reactions and decays5,6. A mirror symmetry emerges from this isobaric-spin formalism: nuclei with exchanged numbers of neutrons and protons, known as mirror nuclei, should have an identical set of states7, including their ground state, labelled by their total angular momentum J and parity π. Here we report evidence of mirror-symmetry violation in bound nuclear ground states within the mirror partners strontium-73 and bromine-73. We find that a J π = 5/2- spin assignment is needed to explain the proton-emission pattern observed from the T = 3/2 isobaric-analogue state in rubidium-73, which is identical to the ground state of strontium-73. Therefore the ground state of strontium-73 must differ from its J π = 1/2- mirror bromine-73. This observation offers insights into charge-symmetry-breaking forces acting in atomic nuclei.

2.
Nat Commun ; 13(1): 2151, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444209

RESUMEN

The neutron inelastic scattering of carbon-12, populating the Hoyle state, is a reaction of interest for the triple-alpha process. The inverse process (neutron upscattering) can enhance the Hoyle state's decay rate to the bound states of 12C, effectively increasing the overall triple-alpha reaction rate. The cross section of this reaction is impossible to measure experimentally but has been determined here at astrophysically-relevant energies using detailed balance. Using a highly-collimated monoenergetic beam, here we measure neutrons incident on the Texas Active Target Time Projection Chamber (TexAT TPC) filled with CO2 gas, we measure the 3α-particles (arising from the decay of the Hoyle state following inelastic scattering) and a cross section is extracted. Here we show the neutron-upscattering enhancement is observed to be much smaller than previously expected. The importance of the neutron-upscattering enhancement may therefore not be significant aside from in very particular astrophysical sites (e.g. neutron star mergers).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA